Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

8.E: Conic Sections (Exercises)

  • Anonymous
  • LibreTexts

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 8.E.1

Calculate the distance and midpoint between the given two points.

  1. (0,2) and (4,1)
  2. (6,0) and (2,6)
  3. (2,4) and (6,8)
  4. (12,1) and (52,12)
  5. (0,32) and (5,42)
  6. (53,6) and (33,6)
Answer

1. Distance: 5 units; midpoint: (2,12)

3. Distance: 410 units; midpoint: (4,2)

5. Distance: 7 units; midpoint: (52,722)

Exercise 8.E.2

Determine the area of a circle whose diameter is defined by the given two points.

  1. (3,3) and (3,3)
  2. (2,9) and (10,15)
  3. (23,12) and (13,32)
  4. (25,22) and (0,42)
Answer

1. 18π square units

3. 5π4 square units

Exercise 8.E.3

Rewrite in standard form and give the vertex.

  1. y=x210x+33
  2. y=2x24x1
  3. y=x23x1
  4. y=x2x2
  5. x=y2+10y+10
  6. x=3y2+12y+7
  7. x=y2+8y3
  8. x=5y25y+2
Answer

1. y=(x5)2+8; vertex: (5,8)

3. y=(x32)2134; vertex: (32,134)

5. x=(y+5)215; vertex: (15,5)

7. x=(y4)2+13; vertex: (13,4)

Exercise 8.E.4

Rewrite in standard form and graph. Be sure to find the vertex and all intercepts.

  1. y=x220x+75
  2. y=x210x+75
  3. y=2x212x24
  4. y=4x2+4x+6
  5. x=y210y+16
  6. x=y2+4y+12
  7. x=4y2+12y
  8. x=9y2+18y+12
  9. x=4y2+4y+2
  10. x=y25y+2
Answer

1. y=(x10)225;

897c1db754e7a1fd038af05b6edee1a5.png
Figure 8.E.1

3. y=2(x+3)26;

4c5f575d96ad71dfaeaf14e720e4a33b.png
Figure 8.E.2

5. x=(y5)29;

e83f649f71ebd05f11d4c97a5f7992b1.png
Figure 8.E.3

7. x=4(y32)2+9;

663ae0a27b5607cc3c234ff842fce2ad.png
Figure 8.E.4

9. x=4(y12)2+3;

2e8569519d7b31c81ee38d7855d91e9c.png
Figure 8.E.5

Exercise 8.E.5

Determine the center and radius given the equation of a circle in standard form.

  1. (x6)2+y2=9
  2. (x+8)2+(y10)2=1
  3. x2+y2=5
  4. (x38)2+(y+52)2=12
Answer

1. Center: (6,0); radius: r=3

3. Center: (0,0); radius: r=5

Exercise 8.E.6

Determine standard form for the equation of the circle:

  1. Center (7,2) with radius r=10
  2. Center (13,1) with radius r=23
  3. Center (0,5) with radius r=27
  4. Center (1,0) with radius r=532
  5. Circle whose diameter is defined by (4,10) and (2,8)
  6. Circle whose diameter is defined by (3,6) and (0,4)
Answer

1. (x+7)2+(y2)2=100

3. x2+(y+5)2=28

5. (x+3)2+(y9)2=2

Exercise 8.E.7

Find the x- and y-intercepts.

  1. (x3)2+(y+5)2=16
  2. (x+5)2+(y1)2=4
  3. x2+(y2)2=20
  4. (x3)2+(y+3)2=8
  5. x2+y212y+27=0
  6. x2+y24x+2y+1=0
Answer

1. x-intercepts: none; y-intercepts: (0,5±7)

3. x-intercepts: (±4,0); y-intercepts: (0,2±25)

5. x-intercepts: none; y-intercepts: (0,3),(0,9)

Exercise 8.E.8

Graph.

  1. (x+8)2+(y6)2=4
  2. (x20)2+(y+152)2=2254
  3. x2+y2=24
  4. (x1)2+y2=14
  5. x2+(y7)2=27
  6. (x+1)2+(y1)2=2
Answer

1.

4887782fe9f78e134a5596edb240d9f2.png
Figure 8.E.6

3.

0c0ff6d02009afdff333ca8dc3d74740.png
Figure 8.E.7

5.

f4772183b680f3cb2a33299c161ca2c1.png
Figure 8.E.8

Exercise 8.E.9

Rewrite in standard form and graph.

  1. x2+y26x+4y3=0
  2. x2+y2+8x10y+16=0
  3. 2x2+2y22x6y3=0
  4. 4x2+4y2+8y+1=0
  5. x2+y25x+y12=0
  6. x2+y2+12x8y=0
Answer

1. (x3)2+(y+2)2=16;

eeed6c212bf896160f90ea0ff0d67372.png
Figure 8.E.9

3. (x12)2+(y32)2=4;

65391be5d00c3fc2349d44049ee02608.png
Figure 8.E.10

5. (x52)2+(y+12)2=7;

65032a7c2f7fe05b8648004ea1d0fe52.png
Figure 8.E.11

Exercise 8.E.10

Given the equation of an ellipse in standard form, determine its center, orientation, major radius, and minor radius.

  1. (x+12)216+(y10)24=1
  2. (x+3)23+y225=1
  3. x2+(y5)212=1
  4. (x8)25+(y+8)18=1
Answer

1. Center: (12,10); orientation: horizontal; major radius: 4 units; minor radius: 2 units

3. Center: (0,5); orientation: vertical; major radius: 23 units; minor radius: 1 unit

Exercise 8.E.11

Determine the standard form for the equation of the ellipse given the following information.

  1. Center (0,4) with a=3 and b=4
  2. Center (3,8) with a=1 and b=7
  3. Center (0,0) with a=5 and b=2
  4. Center (10,30) with a=10 and b=1
Answer

1. x29+(y+4)216=1

3. x225+y22=1

Exercise 8.E.12

Find the x- and y-intercepts.

  1. (x+2)24+y29=1
  2. (x1)22+(y+1)23=1
  3. 5x2+2y2=20
  4. 5(x3)2+6y2=120
Answer

1. x -intercepts: (4,0),(0,0);y -intercepts: (0,0)

3. x -intercepts: (±2,0);y -intercepts: (0,±10)

Exercise 8.E.13

Graph.

  1. (x10)225+(y+5)24=1
  2. (x+6)29+(y8)236=1
  3. (x32)24+(y72)2=1
  4. (x23)2+y24=1
  5. x22+y25=1
  6. (x+2)28+(y3)212=1
Answer

1.

83f37f422200edabac62caf1dea0acb2.png
Figure 8.E.12

3.

11ef8bcbd1481207ef0814a748f92fa3.png
Figure 8.E.13

5.

debe7b837ebba6f31b5bb7e584dcb6da.png
Figure 8.E.14

Exercise 8.E.14

Rewrite in standard form and graph.

  1. 4x2+9y28x+90y+193=0
  2. 9x2+4y2+108x80y+580=0
  3. x2+9y2+6x+108y+324=0
  4. 25x2+y2350x8y+1,216=0
  5. 8x2+12y216x36y13=0
  6. 10x2+2y250x+14y+7=0
Answer

1. (x1)29+(y+5)24=1;

108b4be908f56741baa53d6da6cd4ed1.png
Figure 8.E.15

3. (x+3)29+(y+6)2=1;

085c47b5ec86f9608e116005b62ab6b1.png
Figure 8.E.16

5. (x1)26+(y32)24=1;

d746ff18841b1d80c17d15962c850949.png
Figure 8.E.17

Exercise 8.E.15

Given the equation of a hyperbola in standard form, determine its center, which way the graph opens, and the vertices.

  1. (x10)24(y+5)216=1
  2. (x+7)22(y8)28=1
  3. (y20)23(x15)2=1
  4. 3y212(x1)2=36
Answer

1. Center: (10,5); opens left and right; vertices: (8,5),(12,5)

3. Center: (15,20); opens upward and downward; vertices: (15,203),(15,20+3)

Exercise 8.E.16

Determine the standard form for the equation of the hyperbola.

  1. Center (25,10),a=3,b=5, opens up and down.
  2. Center (9,12),a=53,b=7, opens left and right.
  3. Center (4,0),a=1,b=6, opens left and right.
  4. Center (2,3),a=102,b=23, opens up and down.
Answer

1. (y10)25(x+25)29=1

3. (x+4)2y236=1

Exercise 8.E.17

Find the x- and y-intercepts.

  1. (x1)24(y+3)29=1
  2. (x+4)28(y2)212=1
  3. 4(y2)2x2=16
  4. 6(y+1)23(x1)2=18
Answer

1. x -intercepts: (1±22,0);y -intercepts: none

3. x -intercepts: (0,0);y -intercepts: (0,0),(0,4)

Exercise 8.E.18

Graph.

  1. (x10)225(y+5)2100=1
  2. (x4)24(y8)216=1
  3. (y3)29(x6)281=1
  4. (y+1)24(x+1)225=1
  5. y227(x3)29=1
  6. x22y23=1
Answer

1.

22e21c894d4aba25c953a397fae8fd6b.png
Figure 8.E.18

3.

ae04dc1c539c3c98b806a7a4cbc57b94.png
Figure 8.E.19

5.

d9c5e337e60c49caffe87fde345d8119.png
Figure 8.E.20

Exercise 8.E.19

Rewrite in standard form and graph.

  1. 4x29y28x90y257=0
  2. 9x2y2108x+16y+224=0
  3. 25y22x2100y+50=0
  4. 3y2x22x10=0
  5. 8y212x2+24y12x33=0
  6. 4y24x216y28x37=0
Answer

1. (x1)29(y+5)24=1;

b562e3f2b31f31e043007fa34460cd11.png
Figure 8.E.21

3. (y2)22x225=1;

014249924a539a2b96566c7ccee865f1.png
Figure 8.E.22

5. (y+32)26(x+12)24=1

bba39f3a81a52414e6234cb8fbba0816.png
Figure 8.E.23

Exercise 8.E.20

Identify the conic sections and rewrite in standard form.

  1. x2+y22x8y+16=0
  2. x2+2y2+4x24y+74=0
  3. x2y26x4y+3=0
  4. x2+y10x+22=0
  5. x2+12y212x+24=0
  6. x2+y2+10y+22=0
  7. 4y220x2+16y+20x9=0
  8. 16x16y2+24y25=0
  9. 9x29y26x18y17=0
  10. 4x2+4y2+4x8y+1=0
Answer

1. Circle;(x1)2+(y4)2=1

3. Hyperbola; (x3)22(y+2)22=1

5. Ellipse; (x6)212+y2=1

7. Hyperbola; (y+2)25(x12)2=1

9. Hyperbola; (x13)2(y+1)2=1

Exercise 8.E.21

Given the graph, write the equation in general form.

1.

d4a159205e14de7af9b6c90a20b3d8c6.png
Figure 8.E.24

2.

8b3405add73ee683d3abb5e71f019bfb.png
Figure 8.E.25

3.

14e554c6a6c7ff2cc64f3d48fa25ac82.png
Figure 8.E.26

4.

05443e5fb93d1991d3cd476acd549a2c.png
Figure 8.E.27

5.

b84e54838134cb4347cc357008ca2d70.png
Figure 8.E.28

6.

44368f995333d3197513a4e4a07442db.png
Figure 8.E.29
Answer

1. x2+y2+18x6y+9=0

3. 9x2y2+72x12y+72=0

5. 9x2+64y2+54x495=0

Exercise 8.E.22

Solve.

  1. {x2+y2=8xy=4
  2. {x2+y2=1x+2y=1
  3. {x2+3y2=42xy=1
  4. {2x2+y2=5x+y=3
  5. {3x22y2=1xy=2
  6. {x23y2=10x2y=1
  7. {2x2+y2=114x+y2=5
  8. {x2+4y2=12x2+4y=5
  9. {5x2y2=10x2+y=2
  10. {2x2+y2=12x4y2=3
  11. {x2+4y2=10xy=2
  12. {y+x2=0xy8=0
  13. {1x+1y=101x1y=6
  14. {1x+1y=1yx=2
  15. {x2y2=3y=x4
  16. {(x1)2+y2=1yx=0
Answer

1. (2,2)

3. (113,1513),(1,1)

5. (9,11),(1,1)

7. (1,3),(1,3)

9. (2,0),(2,0),(7,5),(7,5)

11. (2,2)(2,2)(22,22)(22,22)

13. (18,12)

15. (5,1)

Sample Exam

Exercise 8.E.23

  1. Given two points (4,6) and (2,8):
    1. Calculate the distance between them.
    2. Find the midpoint between them.
  2. Determine the area of a circle whose diameter is defined by the points (4,3) and (1,2).
Answer

1. (1) 210 units; (2) (1,7)

Exercise 8.E.24

Rewrite in standard form and graph. Find the vertex and all intercepts if any.

  1. y=x2+6x5
  2. x=2y2+4y6
  3. x=3y2+3y+1
  4. Find the equation of a circle in standard form with center (6,3) and radius 25 units.
Answer

1. y=(x3)2+4;

b1fe653012b461ad6510b0ed527258db.png
Figure 8.E.30

3. x=3(y12)2+74;

Figure 8.E.31

Exercise 8.E.25

Sketch the graph of the conic section given its equation in standard form.

  1. (x4)2+(y+1)2=45
  2. (x+3)24+y29=1
  3. y23x29=1
  4. x216(y2)2=1
Answer

1.

b46b57dacac73c77494889eb0e36d225.png
Figure 8.E.32

3.

c5f335e27f3e642b70a507398d5551f7.png
Figure 8.E.33

Exercise 8.E.26

Rewrite in standard form and graph.

  1. 9x2+4y2144x+16y+556=0
  2. xy2+6y+7=0
  3. x2+y2+20x20y+100=0
  4. 4y2x2+40y30x225=0
Answer

1. (x8)24+(y+2)29=1;

fd25c8f2c24828374dd4797d6bfe308a.png
Figure 8.E.34

3. (x+10)2+(y10)2=100;

218569990e6d996d7d722ab601747ac4.png
Figure 8.E.35

Exercise 8.E.27

Find the x- and y-intercepts.

  1. x=2(y4)2+9
  2. (y1)212(x+1)2=1
Answer

1. x -intercept: (23,0);y -intercepts: (0,8±322)

Exercise 8.E.28

Solve.

  1. {x+y=2y=x2+4
  2. {yx2=3x2+y2=9
  3. {2xy=1(x+1)2+2y2=1
  4. {x2+y2=6xy=3
Answer

1. (1,3),(2,0)

3.

Exercise 8.E.29

  1. Find the equation of an ellipse in standard form with vertices (3,5) and (5,5) and a minor radius 2 units in length.
  2. Find the equation of a hyperbola in standard form opening left and right with vertices (±5,0) and a conjugate axis that measures 10 units.
  3. Given the graph of the ellipse, determine its equation in general form.
2d8acda4dda31c5e33c1c90cfdccd37a.png
Figure 8.E.36

4. A rectangular deck has an area of 80 square feet and a perimeter that measures 36 feet. Find the dimensions of the deck.

5. The diagonal of a rectangle measures 213 centimeters and the perimeter measures 20 centimeters. Find the dimensions of the rectangle.

Answer

1. (x1)216+(y+5)24=1

3. 4x2+25y224x100y+36=0

5. 6 centimeters by 4 centimeters


This page titled 8.E: Conic Sections (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Anonymous via source content that was edited to the style and standards of the LibreTexts platform.

  • Was this article helpful?

Support Center

How can we help?