8.E: Conic Sections (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise 8.E.1
Calculate the distance and midpoint between the given two points.
- (0,2) and (−4,−1)
- (6,0) and (−2,−6)
- (−2,4) and (−6,−8)
- (12,−1) and (52,−12)
- (0,−3√2) and (√5,−4√2)
- (−5√3,√6) and (−3√3,√6)
- Answer
-
1. Distance: 5 units; midpoint: (−2,12)
3. Distance: 4√10 units; midpoint: (−4,−2)
5. Distance: √7 units; midpoint: (√52,−7√22)
Exercise 8.E.2
Determine the area of a circle whose diameter is defined by the given two points.
- (−3,3) and (3,−3)
- (−2,−9) and (−10,−15)
- (23,−12) and (−13,32)
- (2√5,−2√2) and (0,−4√2)
- Answer
-
1. 18π square units
3. 5π4 square units
Exercise 8.E.3
Rewrite in standard form and give the vertex.
- y=x2−10x+33
- y=2x2−4x−1
- y=x2−3x−1
- y=−x2−x−2
- x=y2+10y+10
- x=3y2+12y+7
- x=−y2+8y−3
- x=5y2−5y+2
- Answer
-
1. y=(x−5)2+8; vertex: (5,8)
3. y=(x−32)2−134; vertex: (32,−134)
5. x=(y+5)2−15; vertex: (−15,−5)
7. x=−(y−4)2+13; vertex: (13,4)
Exercise 8.E.4
Rewrite in standard form and graph. Be sure to find the vertex and all intercepts.
- y=x2−20x+75
- y=−x2−10x+75
- y=−2x2−12x−24
- y=4x2+4x+6
- x=y2−10y+16
- x=−y2+4y+12
- x=−4y2+12y
- x=9y2+18y+12
- x=−4y2+4y+2
- x=−y2−5y+2
- Answer
-
1. y=(x−10)2−25;
Figure 8.E.1 3. y=−2(x+3)2−6;
Figure 8.E.2 5. x=(y−5)2−9;
Figure 8.E.3 7. x=−4(y−32)2+9;
Figure 8.E.4 9. x=−4(y−12)2+3;
Figure 8.E.5
Exercise 8.E.5
Determine the center and radius given the equation of a circle in standard form.
- (x−6)2+y2=9
- (x+8)2+(y−10)2=1
- x2+y2=5
- (x−38)2+(y+52)2=12
- Answer
-
1. Center: (6,0); radius: r=3
3. Center: (0,0); radius: r=√5
Exercise 8.E.6
Determine standard form for the equation of the circle:
- Center (−7,2) with radius r=10
- Center (13,−1) with radius r=23
- Center (0,−5) with radius r=2√7
- Center (1,0) with radius r=5√32
- Circle whose diameter is defined by (−4,10) and (−2,8)
- Circle whose diameter is defined by (3,−6) and (0,−4)
- Answer
-
1. (x+7)2+(y−2)2=100
3. x2+(y+5)2=28
5. (x+3)2+(y−9)2=2
Exercise 8.E.7
Find the x- and y-intercepts.
- (x−3)2+(y+5)2=16
- (x+5)2+(y−1)2=4
- x2+(y−2)2=20
- (x−3)2+(y+3)2=8
- x2+y2−12y+27=0
- x2+y2−4x+2y+1=0
- Answer
-
1. x-intercepts: none; y-intercepts: (0,−5±√7)
3. x-intercepts: (±4,0); y-intercepts: (0,2±2√5)
5. x-intercepts: none; y-intercepts: (0,3),(0,9)
Exercise 8.E.8
Graph.
- (x+8)2+(y−6)2=4
- (x−20)2+(y+152)2=2254
- x2+y2=24
- (x−1)2+y2=14
- x2+(y−7)2=27
- (x+1)2+(y−1)2=2
- Answer
-
1.
Figure 8.E.6 3.
Figure 8.E.7 5.
Figure 8.E.8
Exercise 8.E.9
Rewrite in standard form and graph.
- x2+y2−6x+4y−3=0
- x2+y2+8x−10y+16=0
- 2x2+2y2−2x−6y−3=0
- 4x2+4y2+8y+1=0
- x2+y2−5x+y−12=0
- x2+y2+12x−8y=0
- Answer
-
1. (x−3)2+(y+2)2=16;
Figure 8.E.9 3. (x−12)2+(y−32)2=4;
Figure 8.E.10 5. (x−52)2+(y+12)2=7;
Figure 8.E.11
Exercise 8.E.10
Given the equation of an ellipse in standard form, determine its center, orientation, major radius, and minor radius.
- (x+12)216+(y−10)24=1
- (x+3)23+y225=1
- x2+(y−5)212=1
- (x−8)25+(y+8)18=1
- Answer
-
1. Center: (−12,10); orientation: horizontal; major radius: 4 units; minor radius: 2 units
3. Center: (0,5); orientation: vertical; major radius: 2√3 units; minor radius: 1 unit
Exercise 8.E.11
Determine the standard form for the equation of the ellipse given the following information.
- Center (0,−4) with a=3 and b=4
- Center (3,8) with a=1 and b=√7
- Center (0,0) with a=5 and b=√2
- Center (−10,−30) with a=10 and b=1
- Answer
-
1. x29+(y+4)216=1
3. x225+y22=1
Exercise 8.E.12
Find the x- and y-intercepts.
- (x+2)24+y29=1
- (x−1)22+(y+1)23=1
- 5x2+2y2=20
- 5(x−3)2+6y2=120
- Answer
-
1. x -intercepts: (−4,0),(0,0);y -intercepts: (0,0)
3. x -intercepts: (±2,0);y -intercepts: (0,±√10)
Exercise 8.E.13
Graph.
- (x−10)225+(y+5)24=1
- (x+6)29+(y−8)236=1
- (x−32)24+(y−72)2=1
- (x−23)2+y24=1
- x22+y25=1
- (x+2)28+(y−3)212=1
- Answer
-
1.
Figure 8.E.12 3.
Figure 8.E.13 5.
Figure 8.E.14
Exercise 8.E.14
Rewrite in standard form and graph.
- 4x2+9y2−8x+90y+193=0
- 9x2+4y2+108x−80y+580=0
- x2+9y2+6x+108y+324=0
- 25x2+y2−350x−8y+1,216=0
- 8x2+12y2−16x−36y−13=0
- 10x2+2y2−50x+14y+7=0
- Answer
-
1. (x−1)29+(y+5)24=1;
Figure 8.E.15 3. (x+3)29+(y+6)2=1;
Figure 8.E.16 5. (x−1)26+(y−32)24=1;
Figure 8.E.17
Exercise 8.E.15
Given the equation of a hyperbola in standard form, determine its center, which way the graph opens, and the vertices.
- (x−10)24−(y+5)216=1
- (x+7)22−(y−8)28=1
- (y−20)23−(x−15)2=1
- 3y2−12(x−1)2=36
- Answer
-
1. Center: (10,−5); opens left and right; vertices: (8,−5),(12,−5)
3. Center: (15,20); opens upward and downward; vertices: (15,20−√3),(15,20+√3)
Exercise 8.E.16
Determine the standard form for the equation of the hyperbola.
- Center (−25,10),a=3,b=√5, opens up and down.
- Center (9,−12),a=5√3,b=7, opens left and right.
- Center (−4,0),a=1,b=6, opens left and right.
- Center (−2,−3),a=10√2,b=2√3, opens up and down.
- Answer
-
1. (y−10)25−(x+25)29=1
3. (x+4)2−y236=1
Exercise 8.E.17
Find the x- and y-intercepts.
- (x−1)24−(y+3)29=1
- (x+4)28−(y−2)212=1
- 4(y−2)2−x2=16
- 6(y+1)2−3(x−1)2=18
- Answer
-
1. x -intercepts: (1±2√2,0);y -intercepts: none
3. x -intercepts: (0,0);y -intercepts: (0,0),(0,4)
Exercise 8.E.18
Graph.
- (x−10)225−(y+5)2100=1
- (x−4)24−(y−8)216=1
- (y−3)29−(x−6)281=1
- (y+1)24−(x+1)225=1
- y227−(x−3)29=1
- x22−y23=1
- Answer
-
1.
Figure 8.E.18 3.
Figure 8.E.19 5.
Figure 8.E.20
Exercise 8.E.19
Rewrite in standard form and graph.
- 4x2−9y2−8x−90y−257=0
- 9x2−y2−108x+16y+224=0
- 25y2−2x2−100y+50=0
- 3y2−x2−2x−10=0
- 8y2−12x2+24y−12x−33=0
- 4y2−4x2−16y−28x−37=0
- Answer
-
1. (x−1)29−(y+5)24=1;
Figure 8.E.21 3. (y−2)22−x225=1;
Figure 8.E.22 5. (y+32)26−(x+12)24=1
Figure 8.E.23
Exercise 8.E.20
Identify the conic sections and rewrite in standard form.
- x2+y2−2x−8y+16=0
- x2+2y2+4x−24y+74=0
- x2−y2−6x−4y+3=0
- x2+y−10x+22=0
- x2+12y2−12x+24=0
- x2+y2+10y+22=0
- 4y2−20x2+16y+20x−9=0
- 16x−16y2+24y−25=0
- 9x2−9y2−6x−18y−17=0
- 4x2+4y2+4x−8y+1=0
- Answer
-
1. Circle;(x−1)2+(y−4)2=1
3. Hyperbola; (x−3)22−(y+2)22=1
5. Ellipse; (x−6)212+y2=1
7. Hyperbola; (y+2)25−(x−12)2=1
9. Hyperbola; (x−13)2−(y+1)2=1
Exercise 8.E.21
Given the graph, write the equation in general form.
1.

2.

3.

4.

5.

6.

- Answer
-
1. x2+y2+18x−6y+9=0
3. 9x2−y2+72x−12y+72=0
5. 9x2+64y2+54x−495=0
Exercise 8.E.22
Solve.
- {x2+y2=8x−y=4
- {x2+y2=1x+2y=1
- {x2+3y2=42x−y=1
- {2x2+y2=5x+y=3
- {3x2−2y2=1x−y=2
- {x2−3y2=10x−2y=1
- {2x2+y2=114x+y2=5
- {x2+4y2=12x2+4y=5
- {5x2−y2=10x2+y=2
- {2x2+y2=12x−4y2=−3
- {x2+4y2=10xy=2
- {y+x2=0xy−8=0
- {1x+1y=101x−1y=6
- {1x+1y=1y−x=2
- {x−2y2=3y=√x−4
- {(x−1)2+y2=1y−√x=0
- Answer
-
1. (2,−2)
3. (−113,−1513),(1,1)
5. (−9,−11),(1,−1)
7. (−1,−3),(−1,3)
9. (−√2,0),(√2,0),(−√7,−5),(√7,−5)
11. (√2,√2)⋅(−√2,−√2)⋅(2√2,√22)⋅(−2√2,−√22)
13. (18,12)
15. (5,1)
Sample Exam
Exercise 8.E.23
- Given two points (−4,−6) and (2,−8):
- Calculate the distance between them.
- Find the midpoint between them.
- Determine the area of a circle whose diameter is defined by the points (4,−3) and (−1,2).
- Answer
-
1. (1) 2√10 units; (2) (−1,−7)
Exercise 8.E.24
Rewrite in standard form and graph. Find the vertex and all intercepts if any.
- y=−x2+6x−5
- x=2y2+4y−6
- x=−3y2+3y+1
- Find the equation of a circle in standard form with center (−6,3) and radius 2√5 units.
- Answer
-
1. y=−(x−3)2+4;
Figure 8.E.30 3. x=−3(y−12)2+74;
Figure 8.E.31
Exercise 8.E.25
Sketch the graph of the conic section given its equation in standard form.
- (x−4)2+(y+1)2=45
- (x+3)24+y29=1
- y23−x29=1
- x216−(y−2)2=1
- Answer
-
1.
Figure 8.E.32 3.
Figure 8.E.33
Exercise 8.E.26
Rewrite in standard form and graph.
- 9x2+4y2−144x+16y+556=0
- x−y2+6y+7=0
- x2+y2+20x−20y+100=0
- 4y2−x2+40y−30x−225=0
- Answer
-
1. (x−8)24+(y+2)29=1;
Figure 8.E.34 3. (x+10)2+(y−10)2=100;
Figure 8.E.35
Exercise 8.E.27
Find the x- and y-intercepts.
- x=−2(y−4)2+9
- (y−1)212−(x+1)2=1
- Answer
-
1. x -intercept: (−23,0);y -intercepts: (0,8±3√22)
Exercise 8.E.28
Solve.
- {x+y=2y=−x2+4
- {y−x2=−3x2+y2=9
- {2x−y=1(x+1)2+2y2=1
- {x2+y2=6xy=3
- Answer
-
1. (−1,3),(2,0)
3. ∅
Exercise 8.E.29
- Find the equation of an ellipse in standard form with vertices (−3,−5) and (5,−5) and a minor radius 2 units in length.
- Find the equation of a hyperbola in standard form opening left and right with vertices (±√5,0) and a conjugate axis that measures 10 units.
- Given the graph of the ellipse, determine its equation in general form.

4. A rectangular deck has an area of 80 square feet and a perimeter that measures 36 feet. Find the dimensions of the deck.
5. The diagonal of a rectangle measures 2√13 centimeters and the perimeter measures 20 centimeters. Find the dimensions of the rectangle.
- Answer
-
1. (x−1)216+(y+5)24=1
3. 4x2+25y2−24x−100y+36=0
5. 6 centimeters by 4 centimeters