Skip to main content
$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 8: Conic Sections

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

• 8.1: Distance, Midpoint, and the Parabola
A conic section is a curve obtained from the intersection of a right circular cone and a plane. The conic sections are the parabola, circle, ellipse, and hyperbola.
• 8.2: Circles
A circle is the set of points in a plane that lie a fixed distance, called the radius, from any point, called the center. The diameter is the length of a line segment passing through the center whose endpoints are on the circle. In addition, a circle can be formed by the intersection of a cone and a plane that is perpendicular to the axis of the cone.
• 8.3: Ellipses
An ellipse is the set of points in a plane whose distances from two fixed points, called foci, have a sum that is equal to a positive constant.
• 8.4: Hyperbolas
A hyperbola is the set of points in a plane whose distances from two fixed points, called foci, has an absolute difference that is equal to a positive constant.
• 8.5: Solving Nonlinear Systems
A system of equations where at least one equation is not linear is called a nonlinear system. In this section we will use the substitution method to solve nonlinear systems.
• 8.E: Conic Sections (Exercises)