Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.6E: Exercises

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

Practice Makes Perfect

In the following exercises, divide each polynomial by the monomial.

Exercise 1

\dfrac{45y+36}{9}

Exercise 2

\dfrac{30b+75}{5}

Answer

6b+15

Exercise 3

\dfrac{8d^2−4d}{2}

Exercise 4

\dfrac{42x^2−14x}{7}

Answer

6x^2−2x

Exercise 5

(16y^2−20y)÷4y

Exercise 6

(55w^2−10w)÷5w

Answer

11w−2

Exercise 7

(9n^4+6n^3)÷3n

Exercise 8

(8x^3+6x^2)÷2x

Answer

4x^2+3x

Exercise 9

\dfrac{18y^2−12y}{−6}

Exercise 10

\dfrac{20b^2−12b}{−4}

Answer

−5b^2+3b

Exercise 11

\dfrac{35a^4+65a^2}{−5}

Exercise 12

\dfrac{51m^4+72m^3}{−3}

Answer

−17m^4−24m^3

Exercise 13

\dfrac{310y^4−200y^3}{5y^2}

Exercise 14

\dfrac{412z^8−48z^5}{4z^3}

Answer

103z^5−12z^2

Exercise 15

\dfrac{46x^3+38x^2}{2x^2}

Exercise 16

\dfrac{51y^4+42y^2}{3y^2}

Answer

17y^2+14

Exercise 17

(24p^2−33p)÷(−3p)

Exercise 18

(35x^4−21x)÷(−7x)

Answer

−5x^3+3

Exercise 19

(63m^4−42m^3)÷(−7m^2)

Exercise 20

(48y^4−24y^3)÷(−8y^2)

Answer

−6y^2+3y

Exercise 21

(63a^{2}b^3+72ab^4)÷(9ab)

Exercise 22

(45x^{3}y^4+60xy^2)÷(5xy)

Answer

9x^{2}y^3+12y

Exercise 23

\dfrac{52p^{5}q^4+36p^{4}q^3−64p^{3}q^2}{4p^{2}q}

Exercise 24

\dfrac{49c^{2}d^2−70c^{3}d^3−35c^{2}d}{7cd^2}

Answer

7c−10c^{2}d−\dfrac{5c}{d}

Exercise 25

\dfrac{66x^{3}y^2−110x^{2}y^3−44x^{4}y^3}{11x^{2}y^2}

Exercise 26

\dfrac{72r^{5}s^2+132r^{4}s^3−96r^{3}s^5}{12r^{2}s^2}

Answer

6r^3+11r^{2}s−8rs^3

Exercise 27

\dfrac{4w^2+2w−5}{2w}

Exercise 28

\dfrac{12q^2+3q−1}{3q}

Answer

4q+1−\dfrac{1}{3q}

Exercise 29

\dfrac{10x^2+5x−4}{−5x}

Exercise 30

\dfrac{20y^2+12y−1}{−4y}

Answer

−5y−3+\dfrac{1}{4y}

Exercise 31

\dfrac{36p^3+18p^2−12p}{6p^2}

Exercise 32

\dfrac{63a^3−108a^2+99a}{9a^2}

Answer

7a−12+\dfrac{11}{a}

Divide a Polynomial by a Binomial

In the following exercises, divide each polynomial by the binomial.

Exercise 33

(y^2+7y+12)÷(y+3)

Exercise 34

(d^2+8d+12)÷(d+2)

Answer

d+6

Exercise 35

(x^2−3x−10)÷(x+2)

Exercise 36

(a^2−2a−35)÷(a+5)

Answer

a−7

Exercise 37

(t^2−12t+36)÷(t−6)

Exercise 38

(x^2−14x+49)÷(x−7)

Answer

x−7

Exercise 39

(6m^2−19m−20)÷(m−4)

Exercise 40

(4x^2−17x−15)÷(x−5)

Answer

4x+3

Exercise 41

(q^2+2q+20)÷(q+6)

Exercise 42

(p^2+11p+16)÷(p+8)

Answer

p+3−\dfrac{8}{p+8}

Exercise 43

(y^2−3y−15)÷(y−8)

Exercise 44

(x^2+2x−30)÷(x−5)

Answer

x+7+\dfrac{5}{x−5}

Exercise 45

(3b^3+b^2+2)÷(b+1)

Exercise 46

(2n^3−10n+28)÷(n+3)

Answer

2n^2−6n+8 + \frac{4}{n+3}

Exercise 47

(2y^3−6y−36)÷(y−3)

Exercise 48

(7q^3−5q−2)÷(q−1)

Answer

7q^2+7q+2

Exercise 49

(z^3+1)÷(z+1)

Exercise 50

(m^3+1000)÷(m+10)

Answer

m^2−10m+100

Exercise 51

(a^3−125)÷(a−5)

Exercise 52

(x^3−216)÷(x−6)

Answer

x^2+6x+36

Exercise 53

(64x^3−27)÷(4x−3)

Exercise 54

(125y^3−64)÷(5y−4)

Answer

25y^2+20x+16

Everyday Math

Exercise 55

Average cost Pictures Plus produces digital albums. The company’s average cost (in dollars) to make x albums is given by the expression \dfrac{7x+500}{x}

  1. Find the quotient by dividing the numerator by the denominator.
  2. What will the average cost (in dollars) be to produce 20 albums?
Exercise 56

Handshakes At a company meeting, every employee shakes hands with every other employee. The number of handshakes is given by the expression \dfrac{n^2−n}{2} nn represents the number of employees. How many handshakes will there be if there are 10 employees at the meeting?

Answer

45

Writing Exercises

Exercise 57

James divides 48y+6 by 6 this way: \dfrac{48y+6}{6}=48y

Exercise 58

Divide \dfrac{10x^2+x−12}{2x} and explain with words how you get each term of the quotient.

Answer

Answers will vary.

Self Check

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

This is a table that has three rows and four columns. In the first row, which is a header row, the cells read from left to right “I can…,” “Confidently,” “With some help,” and “No-I don’t get it!” The first column below “I can…” reads “divide a polynomial by a monomial,” and “divide a polynomial by a binomial.” The rest of the cells are blank.

ⓑ After reviewing this checklist, what will you do to become confident for all goals?


This page titled 6.6E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?