6.6E: Exercises
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}Practice Makes Perfect
In the following exercises, divide each polynomial by the monomial.
\dfrac{45y+36}{9}
\dfrac{30b+75}{5}
- Answer
-
6b+15
\dfrac{8d^2−4d}{2}
\dfrac{42x^2−14x}{7}
- Answer
-
6x^2−2x
(16y^2−20y)÷4y
(55w^2−10w)÷5w
- Answer
-
11w−2
(9n^4+6n^3)÷3n
(8x^3+6x^2)÷2x
- Answer
-
4x^2+3x
\dfrac{18y^2−12y}{−6}
\dfrac{20b^2−12b}{−4}
- Answer
-
−5b^2+3b
\dfrac{35a^4+65a^2}{−5}
\dfrac{51m^4+72m^3}{−3}
- Answer
-
−17m^4−24m^3
\dfrac{310y^4−200y^3}{5y^2}
\dfrac{412z^8−48z^5}{4z^3}
- Answer
-
103z^5−12z^2
\dfrac{46x^3+38x^2}{2x^2}
\dfrac{51y^4+42y^2}{3y^2}
- Answer
-
17y^2+14
(24p^2−33p)÷(−3p)
(35x^4−21x)÷(−7x)
- Answer
-
−5x^3+3
(63m^4−42m^3)÷(−7m^2)
(48y^4−24y^3)÷(−8y^2)
- Answer
-
−6y^2+3y
(63a^{2}b^3+72ab^4)÷(9ab)
(45x^{3}y^4+60xy^2)÷(5xy)
- Answer
-
9x^{2}y^3+12y
\dfrac{52p^{5}q^4+36p^{4}q^3−64p^{3}q^2}{4p^{2}q}
\dfrac{49c^{2}d^2−70c^{3}d^3−35c^{2}d}{7cd^2}
- Answer
-
7c−10c^{2}d−\dfrac{5c}{d}
\dfrac{66x^{3}y^2−110x^{2}y^3−44x^{4}y^3}{11x^{2}y^2}
\dfrac{72r^{5}s^2+132r^{4}s^3−96r^{3}s^5}{12r^{2}s^2}
- Answer
-
6r^3+11r^{2}s−8rs^3
\dfrac{4w^2+2w−5}{2w}
\dfrac{12q^2+3q−1}{3q}
- Answer
-
4q+1−\dfrac{1}{3q}
\dfrac{10x^2+5x−4}{−5x}
\dfrac{20y^2+12y−1}{−4y}
- Answer
-
−5y−3+\dfrac{1}{4y}
\dfrac{36p^3+18p^2−12p}{6p^2}
\dfrac{63a^3−108a^2+99a}{9a^2}
- Answer
-
7a−12+\dfrac{11}{a}
Divide a Polynomial by a Binomial
In the following exercises, divide each polynomial by the binomial.
(y^2+7y+12)÷(y+3)
(d^2+8d+12)÷(d+2)
- Answer
-
d+6
(x^2−3x−10)÷(x+2)
(a^2−2a−35)÷(a+5)
- Answer
-
a−7
(t^2−12t+36)÷(t−6)
(x^2−14x+49)÷(x−7)
- Answer
-
x−7
(6m^2−19m−20)÷(m−4)
(4x^2−17x−15)÷(x−5)
- Answer
-
4x+3
(q^2+2q+20)÷(q+6)
(p^2+11p+16)÷(p+8)
- Answer
-
p+3−\dfrac{8}{p+8}
(y^2−3y−15)÷(y−8)
(x^2+2x−30)÷(x−5)
- Answer
-
x+7+\dfrac{5}{x−5}
(3b^3+b^2+2)÷(b+1)
(2n^3−10n+28)÷(n+3)
- Answer
-
2n^2−6n+8 + \frac{4}{n+3}
(2y^3−6y−36)÷(y−3)
(7q^3−5q−2)÷(q−1)
- Answer
-
7q^2+7q+2
(z^3+1)÷(z+1)
(m^3+1000)÷(m+10)
- Answer
-
m^2−10m+100
(a^3−125)÷(a−5)
(x^3−216)÷(x−6)
- Answer
-
x^2+6x+36
(64x^3−27)÷(4x−3)
(125y^3−64)÷(5y−4)
- Answer
-
25y^2+20x+16
Everyday Math
Average cost Pictures Plus produces digital albums. The company’s average cost (in dollars) to make x albums is given by the expression \dfrac{7x+500}{x}
- Find the quotient by dividing the numerator by the denominator.
- What will the average cost (in dollars) be to produce 20 albums?
Handshakes At a company meeting, every employee shakes hands with every other employee. The number of handshakes is given by the expression \dfrac{n^2−n}{2} nn represents the number of employees. How many handshakes will there be if there are 10 employees at the meeting?
- Answer
-
45
Writing Exercises
James divides 48y+6 by 6 this way: \dfrac{48y+6}{6}=48y
Divide \dfrac{10x^2+x−12}{2x} and explain with words how you get each term of the quotient.
- Answer
-
Answers will vary.
Self Check
ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
ⓑ After reviewing this checklist, what will you do to become confident for all goals?