# 6.6E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Practice Makes Perfect

In the following exercises, divide each polynomial by the monomial.

##### Exercise 1

$$\dfrac{45y+36}{9}$$

##### Exercise 2

$$\dfrac{30b+75}{5}$$

$$6b+15$$

##### Exercise 3

$$\dfrac{8d^2−4d}{2}$$

##### Exercise 4

$$\dfrac{42x^2−14x}{7}$$

$$6x^2−2x$$

##### Exercise 5

$$(16y^2−20y)÷4y$$

##### Exercise 6

$$(55w^2−10w)÷5w$$

$$11w−2$$

##### Exercise 7

$$(9n^4+6n^3)÷3n$$

##### Exercise 8

$$(8x^3+6x^2)÷2x$$

$$4x^2+3x$$

##### Exercise 9

$$\dfrac{18y^2−12y}{−6}$$

##### Exercise 10

$$\dfrac{20b^2−12b}{−4}$$

$$−5b^2+3b$$

##### Exercise 11

$$\dfrac{35a^4+65a^2}{−5}$$

##### Exercise 12

$$\dfrac{51m^4+72m^3}{−3}$$

$$−17m^4−24m^3$$

##### Exercise 13

$$\dfrac{310y^4−200y^3}{5y^2}$$

##### Exercise 14

$$\dfrac{412z^8−48z^5}{4z^3}$$

$$103z^5−12z^2$$

##### Exercise 15

$$\dfrac{46x^3+38x^2}{2x^2}$$

##### Exercise 16

$$\dfrac{51y^4+42y^2}{3y^2}$$

$$17y^2+14$$

##### Exercise 17

$$(24p^2−33p)÷(−3p)$$

##### Exercise 18

$$(35x^4−21x)÷(−7x)$$

$$−5x^3+3$$

##### Exercise 19

$$(63m^4−42m^3)÷(−7m^2)$$

##### Exercise 20

$$(48y^4−24y^3)÷(−8y^2)$$

$$−6y^2+3y$$

##### Exercise 21

$$(63a^{2}b^3+72ab^4)÷(9ab)$$

##### Exercise 22

$$(45x^{3}y^4+60xy^2)÷(5xy)$$

$$9x^{2}y^3+12y$$

##### Exercise 23

$$\dfrac{52p^{5}q^4+36p^{4}q^3−64p^{3}q^2}{4p^{2}q}$$

##### Exercise 24

$$\dfrac{49c^{2}d^2−70c^{3}d^3−35c^{2}d}{7cd^2}$$

$$7c−10c^{2}d−\dfrac{5c}{d}$$

##### Exercise 25

$$\dfrac{66x^{3}y^2−110x^{2}y^3−44x^{4}y^3}{11x^{2}y^2}$$

##### Exercise 26

$$\dfrac{72r^{5}s^2+132r^{4}s^3−96r^{3}s^5}{12r^{2}s^2}$$

$$6r^3+11r^{2}s−8rs^3$$

##### Exercise 27

$$\dfrac{4w^2+2w−5}{2w}$$

##### Exercise 28

$$\dfrac{12q^2+3q−1}{3q}$$

$$4q+1−\dfrac{1}{3q}$$

##### Exercise 29

$$\dfrac{10x^2+5x−4}{−5x}$$

##### Exercise 30

$$\dfrac{20y^2+12y−1}{−4y}$$

$$−5y−3+\dfrac{1}{4y}$$

##### Exercise 31

$$\dfrac{36p^3+18p^2−12p}{6p^2}$$

##### Exercise 32

$$\dfrac{63a^3−108a^2+99a}{9a^2}$$

$$7a−12+\dfrac{11}{a}$$

Divide a Polynomial by a Binomial

In the following exercises, divide each polynomial by the binomial.

##### Exercise 33

$$(y^2+7y+12)÷(y+3)$$

##### Exercise 34

$$(d^2+8d+12)÷(d+2)$$

$$d+6$$

##### Exercise 35

$$(x^2−3x−10)÷(x+2)$$

##### Exercise 36

$$(a^2−2a−35)÷(a+5)$$

$$a−7$$

##### Exercise 37

$$(t^2−12t+36)÷(t−6)$$

##### Exercise 38

$$(x^2−14x+49)÷(x−7)$$

$$x−7$$

##### Exercise 39

$$(6m^2−19m−20)÷(m−4)$$

##### Exercise 40

$$(4x^2−17x−15)÷(x−5)$$

$$4x+3$$

##### Exercise 41

$$(q^2+2q+20)÷(q+6)$$

##### Exercise 42

$$(p^2+11p+16)÷(p+8)$$

$$p+3−\dfrac{8}{p+8}$$

##### Exercise 43

$$(y^2−3y−15)÷(y−8)$$

##### Exercise 44

$$(x^2+2x−30)÷(x−5)$$

$$x+7+\dfrac{5}{x−5}$$

##### Exercise 45

$$(3b^3+b^2+2)÷(b+1)$$

##### Exercise 46

$$(2n^3−10n+28)÷(n+3)$$

$$2n^2−6n+8 + \frac{4}{n+3}$$

##### Exercise 47

$$(2y^3−6y−36)÷(y−3)$$

##### Exercise 48

$$(7q^3−5q−2)÷(q−1)$$

$$7q^2+7q+2$$

##### Exercise 49

$$(z^3+1)÷(z+1)$$

##### Exercise 50

$$(m^3+1000)÷(m+10)$$

$$m^2−10m+100$$

##### Exercise 51

$$(a^3−125)÷(a−5)$$

##### Exercise 52

$$(x^3−216)÷(x−6)$$

$$x^2+6x+36$$

##### Exercise 53

$$(64x^3−27)÷(4x−3)$$

##### Exercise 54

$$(125y^3−64)÷(5y−4)$$

$$25y^2+20x+16$$

## Everyday Math

##### Exercise 55

Average cost Pictures Plus produces digital albums. The company’s average cost (in dollars) to make x albums is given by the expression $$\dfrac{7x+500}{x}$$

1. Find the quotient by dividing the numerator by the denominator.
2. What will the average cost (in dollars) be to produce 20 albums?
##### Exercise 56

Handshakes At a company meeting, every employee shakes hands with every other employee. The number of handshakes is given by the expression $$\dfrac{n^2−n}{2}$$ nn represents the number of employees. How many handshakes will there be if there are 10 employees at the meeting?

45

## Writing Exercises

##### Exercise 57

James divides $$48y+6$$ by $$6$$ this way: $$\dfrac{48y+6}{6}=48y$$

##### Exercise 58

Divide $$\dfrac{10x^2+x−12}{2x}$$ and explain with words how you get each term of the quotient.