6.6E: Exercises
- Page ID
- 30256
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Practice Makes Perfect
In the following exercises, divide each polynomial by the monomial.
\(\dfrac{45y+36}{9}\)
\(\dfrac{30b+75}{5}\)
- Answer
-
\(6b+15\)
\(\dfrac{8d^2−4d}{2}\)
\(\dfrac{42x^2−14x}{7}\)
- Answer
-
\(6x^2−2x\)
\((16y^2−20y)÷4y\)
\((55w^2−10w)÷5w\)
- Answer
-
\(11w−2\)
\((9n^4+6n^3)÷3n\)
\((8x^3+6x^2)÷2x\)
- Answer
-
\(4x^2+3x\)
\(\dfrac{18y^2−12y}{−6}\)
\(\dfrac{20b^2−12b}{−4}\)
- Answer
-
\(−5b^2+3b\)
\(\dfrac{35a^4+65a^2}{−5}\)
\(\dfrac{51m^4+72m^3}{−3}\)
- Answer
-
\(−17m^4−24m^3\)
\(\dfrac{310y^4−200y^3}{5y^2}\)
\(\dfrac{412z^8−48z^5}{4z^3}\)
- Answer
-
\(103z^5−12z^2\)
\(\dfrac{46x^3+38x^2}{2x^2}\)
\(\dfrac{51y^4+42y^2}{3y^2}\)
- Answer
-
\(17y^2+14\)
\((24p^2−33p)÷(−3p)\)
\((35x^4−21x)÷(−7x)\)
- Answer
-
\(−5x^3+3\)
\((63m^4−42m^3)÷(−7m^2)\)
\((48y^4−24y^3)÷(−8y^2)\)
- Answer
-
\(−6y^2+3y\)
\((63a^{2}b^3+72ab^4)÷(9ab)\)
\((45x^{3}y^4+60xy^2)÷(5xy)\)
- Answer
-
\(9x^{2}y^3+12y\)
\(\dfrac{52p^{5}q^4+36p^{4}q^3−64p^{3}q^2}{4p^{2}q}\)
\(\dfrac{49c^{2}d^2−70c^{3}d^3−35c^{2}d}{7cd^2}\)
- Answer
-
\(7c−10c^{2}d−\dfrac{5c}{d}\)
\(\dfrac{66x^{3}y^2−110x^{2}y^3−44x^{4}y^3}{11x^{2}y^2}\)
\(\dfrac{72r^{5}s^2+132r^{4}s^3−96r^{3}s^5}{12r^{2}s^2}\)
- Answer
-
\(6r^3+11r^{2}s−8rs^3\)
\(\dfrac{4w^2+2w−5}{2w}\)
\(\dfrac{12q^2+3q−1}{3q}\)
- Answer
-
\(4q+1−\dfrac{1}{3q}\)
\(\dfrac{10x^2+5x−4}{−5x}\)
\(\dfrac{20y^2+12y−1}{−4y}\)
- Answer
-
\(−5y−3+\dfrac{1}{4y}\)
\(\dfrac{36p^3+18p^2−12p}{6p^2}\)
\(\dfrac{63a^3−108a^2+99a}{9a^2}\)
- Answer
-
\(7a−12+\dfrac{11}{a}\)
Divide a Polynomial by a Binomial
In the following exercises, divide each polynomial by the binomial.
\((y^2+7y+12)÷(y+3)\)
\((d^2+8d+12)÷(d+2)\)
- Answer
-
\(d+6\)
\((x^2−3x−10)÷(x+2)\)
\((a^2−2a−35)÷(a+5)\)
- Answer
-
\(a−7\)
\((t^2−12t+36)÷(t−6)\)
\((x^2−14x+49)÷(x−7)\)
- Answer
-
\(x−7\)
\((6m^2−19m−20)÷(m−4)\)
\((4x^2−17x−15)÷(x−5)\)
- Answer
-
\(4x+3\)
\((q^2+2q+20)÷(q+6)\)
\((p^2+11p+16)÷(p+8)\)
- Answer
-
\(p+3−\dfrac{8}{p+8}\)
\((y^2−3y−15)÷(y−8)\)
\((x^2+2x−30)÷(x−5)\)
- Answer
-
\(x+7+\dfrac{5}{x−5}\)
\((3b^3+b^2+2)÷(b+1)\)
\((2n^3−10n+28)÷(n+3)\)
- Answer
-
\(2n^2−6n+8 + \frac{4}{n+3}\)
\((2y^3−6y−36)÷(y−3)\)
\((7q^3−5q−2)÷(q−1)\)
- Answer
-
\(7q^2+7q+2\)
\((z^3+1)÷(z+1)\)
\((m^3+1000)÷(m+10)\)
- Answer
-
\(m^2−10m+100\)
\((a^3−125)÷(a−5)\)
\((x^3−216)÷(x−6)\)
- Answer
-
\(x^2+6x+36\)
\((64x^3−27)÷(4x−3)\)
\((125y^3−64)÷(5y−4)\)
- Answer
-
\(25y^2+20x+16\)
Everyday Math
Average cost Pictures Plus produces digital albums. The company’s average cost (in dollars) to make x albums is given by the expression \(\dfrac{7x+500}{x}\)
- Find the quotient by dividing the numerator by the denominator.
- What will the average cost (in dollars) be to produce 20 albums?
Handshakes At a company meeting, every employee shakes hands with every other employee. The number of handshakes is given by the expression \(\dfrac{n^2−n}{2}\) nn represents the number of employees. How many handshakes will there be if there are 10 employees at the meeting?
- Answer
-
45
Writing Exercises
James divides \(48y+6\) by \(6\) this way: \(\dfrac{48y+6}{6}=48y\)
Divide \(\dfrac{10x^2+x−12}{2x}\) and explain with words how you get each term of the quotient.
- Answer
-
Answers will vary.
Self Check
ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
ⓑ After reviewing this checklist, what will you do to become confident for all goals?