6.1: Add and Subtract Polynomials
( \newcommand{\kernel}{\mathrm{null}\,}\)
By the end of this section, you will be able to:
- Identify polynomials, monomials, binomials, and trinomials
- Determine the degree of polynomials
- Add and subtract monomials
- Add and subtract polynomials
- Evaluate a polynomial for a given value
Before you get started, take this readiness quiz.
- Simplify: 8x+3x.
If you missed this problem, review Example 1.3.37. - Subtract: (5n+8)−(2n−1).
If you missed this problem, review Example 1.10.52. - Write in expanded form: a5.
If you missed this problem, review Example 1.3.7.
Identify Polynomials, Monomials, Binomials and Trinomials
You have learned that a term is a constant or the product of a constant and one or more variables. When it is of the form axm, where a is a constant and m is a whole number, it is called a monomial. Some examples of monomial are 8,−2x2,4y3, and 11z7.
A monomial is a term of the form axm, where a is a constant and m is a positive whole number.
A monomial, or two or more monomials combined by addition or subtraction, is a polynomial. Some polynomials have special names, based on the number of terms. A monomial is a polynomial with exactly one term. A binomial has exactly two terms, and a trinomial has exactly three terms. There are no special names for polynomials with more than three terms.
- polynomial—A monomial, or two or more monomials combined by addition or subtraction, is a polynomial.
- monomial—A polynomial with exactly one term is called a monomial.
- binomial—A polynomial with exactly two terms is called a binomial.
- trinomial—A polynomial with exactly three terms is called a trinomial.
Here are some examples of polynomials.
Polynomial b+14y2−7y+24x4+x3+8x2−9x+1 Monomial 148y2−9x3y5−13 Binomial a+74b−5y2−163x3−9x2 Trinomial x2−7x+129y2+2y−86m4−m3+8mz4+3z2−1
Notice that every monomial, binomial, and trinomial is also a polynomial. They are just special members of the “family” of polynomials and so they have special names. We use the words monomial, binomial, and trinomial when referring to these special polynomials and just call all the rest polynomials.
Determine whether each polynomial is a monomial, binomial, trinomial, or other polynomial.
- 4y2−8y−6
- −5a4b2
- 2x5−5x3−3x+4
- 13−5m3
- q
Solution
Polynomial Number of terms Type (a) 4y2−8y−63 Trinomial (b) −5a4b21 Monomial (c) 2x5−5x3−9x2+3x+45 Ponomial (d) 13−5m32 Binomial (e) q1 Monomial
Determine whether each polynomial is a monomial, binomial, trinomial, or other polynomial:
- 5b
- 8y3−7y2−y−3
- −3x2−5x+9
- 81−4a2
- −5x6
- Answer
-
- monomial
- polynomial
- trinomial
- binomial
- monomial
Determine whether each polynomial is a monomial, binomial, trinomial, or other polynomial:
- 27z3−8
- 12m3−5m2−2m
- 56
- 8x4−7x2−6x−5
- −n4
- Answer
-
- binomial
- trinomial
- monomial
- polynomial
- monomial
Determine the Degree of Polynomials
The degree of a polynomial and the degree of its terms are determined by the exponents of the variable. A monomial that has no variable, just a constant, is a special case. The degree of a constant is 0, i.e., it has no variable.
- The degree of a term is the sum of the exponents of its variables.
- The degree of a constant is 0.
- The degree of a polynomial is the highest degree of all its terms.
Let’s see how this works by looking at several polynomials. We’ll take it step by step, starting with monomials, and then progressing to polynomials with more terms.
A polynomial is in standard form when the terms of a polynomial are written in descending order of degrees. Get in the habit of writing the term with the highest degree first.
Find the degree of the following polynomials.
- 10y
- 4x3−7x+5
- −15
- −8b2+9b−2
- 8xy2+2y
Solution
- 10yThe exponent of y is one. y=y1The degree is 1.
- 4x3−7x+5The highest degree of all the terms is 3.The degree is 3.
- −15The degree of a constant is 0.The degree is 0.
- −8b2+9b−2The highest degree of all the terms is 2.The degree is 2.
- 8xy2+2yThe highest degree of all the terms is 3.The degree is 3.
Find the degree of the following polynomials:
- −15b
- 10z4+4z2−5
- 12c5d4+9c3d9−7
- 3x2y−4x
- −9
- Answer
-
- 1
- 4
- 12
- 3
- 0
Find the degree of the following polynomials:
- 52
- a4b−17a4
- 5x+6y+2z
- 3x2−5x+7
- −a3
- Answer
-
- 0
- 5
- 1
- 2
- 3
Add and Subtract Monomials
You have learned how to simplify expressions by combining like terms. Remember, like terms must have the same variables with the same exponent. Since monomials are terms, adding and subtracting monomials is the same as combining like terms. If the monomials are like terms, we just combine them by adding or subtracting the coefficient.
Add:25y2+15y2
Solution
25y2+15y2Combine like terms.40y2
Add: 12q2+9q2
- Answer
-
21q2
Add:−15c2+8c2
- Answer
-
−7c2
Subtract: 16p−(−7p)
Solution
16p−(−7p)Combine like terms.23p
Subtract: 8m−(−5m).
- Answer
-
13m
Subtract: −15z3−(−5z3)
- Answer
-
−10z3
Remember that like terms must have the same variables with the same exponents.
Simplify: c2+7d2−6c2
Solution
c2+7d2−6c2Combine like terms.−5c2+7d2
Add: 8y2+3z2−3y2
- Answer
-
5y2+3z2
Add: 3m2+n2−7m2
- Answer
-
−4m2+n2
Simplify: u2v+5u2−3v2
Solution
u2v+5u2−3v2There are no like terms to combine.u2v+5u2−3v2
Simplify: m2n2−8m2+4n2
- Answer
-
There are no like terms to combine.
Simplify: pq2−6p−5q2
- Answer
-
There are no like terms to combine.
Add and Subtract Polynomials
We can think of adding and subtracting polynomials as just adding and subtracting a series of monomials. Look for the like terms—those with the same variables and the same exponent. The Commutative Property allows us to rearrange the terms to put like terms together.
Find the sum: (5y2−3y+15)+(3y2−4y−11)
Solution
Identify like terms. | ![]() |
Rearrange to get the like terms together. | ![]() |
Combine like terms. | ![]() |
Find the sum: (7x2−4x+5)+(x2−7x+3)
- Answer
-
8x2−11x+1
Find the sum:(14y2+6y−4)+(3y2+8y+5)
- Answer
-
17y2+14y+1
Find the difference: (9w2−7w+5)−(2w2−4)
Solution
![]() |
|
Distribute and identify like terms. | ![]() |
Rearrange the terms. | ![]() |
Combine like terms. | ![]() |
Find the difference: (8x2+3x−19)−(7x2−14)
- Answer
-
15x2+3x−5
Find the difference: (9b2−5b−4)−(3b2−5b−7)
- Answer
-
6b2+3
Subtract: (c2−4c+7) from (7c2−5c+3)
Solution
![]() |
|
![]() |
|
Distribute and identify like terms. | ![]() |
Rearrange the terms. | ![]() |
Combine like terms. | ![]() |
Subtract: (5z2−6z−2) from (7z2+6z−4)
- Answer
-
2z2+12z−2
Subtract: (x2−5x−8) from (6x2+9x−1)
- Answer
-
5x2+14x+7
Find the sum: (u2−6uv+5v2)+(3u2+2uv)
Solution
(u2−6uv+5v2)+(3u2+2uv)Distribute.u2−6uv+5v2+3u2+2uvRearrange the terms, to put like terms togetheru2+3u2−6uv+2uv+5v2Combine like terms.4u2−4uv+5v2
Find the sum: (3x2−4xy+5y2)+(2x2−xy)
- Answer
-
5x2−5xy+5y2
Find the sum: (2x2−3xy−2y2)+(5x2−3xy)
- Answer
-
7x2−6xy−2y2
Find the difference: (p2+q2)−(p2+10pq−2q2)
Solution
(p2+q2)−(p2+10pq−2q2)Distribute.p2+q2−p2−10pq+2q2Rearrange the terms, to put like terms togetherp2−p2−10pq+q2+2q2Combine like terms.−10pq+3q2
Find the difference: (a2+b2)−(a2+5ab−6b2)
- Answer
-
−5ab−5b2
Find the difference: (m2+n2)−(m2−7mn−3n2)
- Answer
-
4n2+7mn
Simplify: (a3−a2b)−(ab2+b3)+(a2b+ab2)
Solution
(a3−a2b)−(ab2+b3)+(a2b+ab2)Distribute.a3−a2b−ab2−b3+a2b+ab2Rearrange the terms, to put like terms togethera3−a2b+a2b−ab2+ab2−b3Combine like terms.a3−b3
Simplify: (x3−x2y)−(xy2+y3)+(x2y+xy2)
- Answer
-
x3−y3
Simplify: (p3−p2q)+(pq2+q3)−(p2q+pq2)
- Answer
-
p3−2p2q+q3
Evaluate a Polynomial for a Given Value
We have already learned how to evaluate expressions. Since polynomials are expressions, we’ll follow the same procedures to evaluate a polynomial. We will substitute the given value for the variable and then simplify using the order of operations.
Evaluate 5x2−8x+4 when
- x=4
- x=−2
- x=0
Solution
1. x=4 | |
![]() |
|
![]() |
![]() |
Simplify the exponents. | ![]() |
Multiply. | ![]() |
Simplify. | ![]() |
2. x=−2 | |
![]() |
|
![]() |
![]() |
Simplify the exponents. | ![]() |
Multiply. | ![]() |
Simplify. | ![]() |
3. x=0 | |
![]() |
|
![]() |
![]() |
Simplify the exponents. | ![]() |
Multiply. | ![]() |
Simplify. | ![]() |
Evaluate: 3x2+2x−15 when
- x=3
- x=−5
- x=0
- Answer
-
- 18
- 50
- −15
Evaluate: 5z2−z−4 when
- z=−2
- z=0
- z=2
- Answer
-
- 18
- −4
- 14
The polynomial −16t2+250 gives the height of a ball tt seconds after it is dropped from a 250 foot tall building. Find the height after t=2 seconds.
Solution
−16t2+250Substitute t = 2.−16(2)2+250Simplify −16⋅4+250Simplify −64+250Simplify 186After 2 seconds the height of the ball is 186 feet.
The polynomial −16t2+250 gives the height of a ball tt seconds after it is dropped from a 250 foot tall building. Find the height after t=0 seconds.
- Answer
-
250
The polynomial −16t2+250 gives the height of a ball tt seconds after it is dropped from a 250 foot tall building. Find the height after t=3 seconds.
- Answer
-
106
The polynomial 6x2+15xy gives the cost, in dollars, of producing a rectangular container whose top and bottom are squares with side x feet and sides of height y feet. Find the cost of producing a box with x=4 feet and y=6y=6 feet.
Solution
![]() |
|
![]() |
![]() |
Simplify. | ![]() |
Simplify. | ![]() |
Simplify. | ![]() |
The cost of producing the box is $456. |
The polynomial 6x2+15xy gives the cost, in dollars, of producing a rectangular container whose top and bottom are squares with side x feet and sides of height y feet. Find the cost of producing a box with x=6 feet and y=4 feet.
- Answer
-
$576
The polynomial 6x2+15xy gives the cost, in dollars, of producing a rectangular container whose top and bottom are squares with side x feet and sides of height y feet. Find the cost of producing a box with x=5 feet and y=8 feet.
- Answer
-
$750
Key Concepts
- Monomials
- A monomial is a term of the form axm, where aa is a constant and mm is a whole number
- Polynomials
- polynomial—A monomial, or two or more monomials combined by addition or subtraction is a polynomial.
- monomial—A polynomial with exactly one term is called a monomial.
- binomial—A polynomial with exactly two terms is called a binomial.
- trinomial—A polynomial with exactly three terms is called a trinomial.
- Degree of a Polynomial
- The degree of a term is the sum of the exponents of its variables.
- The degree of a constant is 0.
- The degree of a polynomial is the highest degree of all its terms.
Glossary
- binomial
- A binomial is a polynomial with exactly two terms.
- degree of a constant
- The degree of any constant is 0.
- degree of a polynomial
- The degree of a polynomial is the highest degree of all its terms.
- degree of a term
- The degree of a term is the exponent of its variable.
- monomial
- A monomial is a term of the form axm, where a is a constant and m is a whole number; a monomial has exactly one term.
- polynomial
- A polynomial is a monomial, or two or more monomials combined by addition or subtraction.
- standard form
- A polynomial is in standard form when the terms of a polynomial are written in descending order of degrees.
- trinomial
- A trinomial is a polynomial with exactly three terms.