Skip to main content
Mathematics LibreTexts

4.5: Toolbox Functions

  • Page ID
    40918
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Learning the general shapes of some common function families can be helpful in analyzing various problems. This can also be helpful in applying the ideas of statistical regression. Statistical regression typically gathers a collection of data points and tries to fit a mathematical function to the data points. Choosing the type of function that will best fit the data is an important step in determining a suitable regression function.
    Below is an example of a Linear Regression:
    clipboard_e92ff6e6b06d77f752cea4d3b716dd375.png
    The graph below is an example of a Quadratic Regression:
    clipboard_e4f6219ae160cd2347a566efc4cfc13b1.png

    Being familiar with the typical shape of the various function families can help in analyzing experimental data.
    The standard function families are:
    clipboard_e84379dc841d116c1c9f1d82e057efbb4.png
    clipboard_e9cfb271385bef3b95d4db2936d3a473c.png
    clipboard_e4f837eba4dab5cbd4c18a3afc0cc4306.png
    clipboard_ea718e96f0f59b42c3494bafd4ad9ad51.png
    Some other function families that we won't discuss are:

    Exponential function: \(\quad f(x)=a^{x}\)
    Logarithmic function: \(f(x)=\log _{b} x\)
    Trigonometric function: \(\quad f(x)=\sin x\)

    Exercises 4.5
    Sketch the graph for each of the following transformations.
    1) \(\quad f(x)=x^{2}+3\)
    2) \(\quad f(x)=x^{2}-4\)
    3) \(\quad f(x)=(x-5)^{2}+3\)
    4) \(\quad f(x)=(x+1)^{2}-4\)
    5) \(\quad f(x)=|x|-2\)
    6) \(\quad f(x)=|x|+5\)
    7) \(\quad f(x)=|x+3|-2\)
    8) \(\quad f(x)=|x-1|+5\)

    Match each of the following equations to the appropriate graph.
    9) \(\quad f(x)=\sqrt{x+4}-1\)
    10) \(\quad h(x)=x^{2}+x-6\)
    11) \(\quad g(x)=|x+2|-3\)
    12) \(\quad f(x)=4 x-x^{2}\)
    13) \(\quad h(x)=-|x-2|+1\)
    14) \(\quad g(x)=-\frac{3}{5} x+2\)
    15) \(\quad h(x)=\sqrt[3]{x}+4\)
    16) \(\quad f(x)=x^{3}-3 x^{2}+3 x+2\)
    17) \(\quad g(x)=-\sqrt[3]{x+2}\)
    18) \(\quad h(x)=-\sqrt{x+1}-3\)
    19) \(\quad f(x)=\frac{5}{4} x-2\)
    20) \(\quad f(x)=4 x-x^{3}\)

    clipboard_ebb9a62b8c5ed71f527afa0ba943e368c.png
    clipboard_e2c6bb433a9fb93a07d6f2847c770689f.png
    clipboard_ef3516abb96cf1a28ed03ed79c6794546.png
    clipboard_ef1af4e0402bd2bc31fe0863b5ea51ec5.png



    This page titled 4.5: Toolbox Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard W. Beveridge.

    • Was this article helpful?