1.E: The Arithmetic of Numbers (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
1.1 An Introduction to the Integers
In Exercises 1-8, simplify each of the following expressions.
1) |5|
- Answer
-
5
2) |1|
3) |−2|
- Answer
-
2
4) |−1|
5) |2|
- Answer
-
2
6) |8|
7) |−4|
- Answer
-
4
8) |−6|
In Exercises 9-24, simplify each of the following expressions as much as possible.
9) −91+(−147)
- Answer
-
−238
10) −23+(−13)
11) 96+145
- Answer
-
241
12) 16+127
13) −76+46
- Answer
-
−30
14) −11+21
15) −59+(−12)
- Answer
-
−71
16) −40+(−58)
17) 37+(−86)
- Answer
-
−49
18) 143+(−88)
19) 66+(−85)
- Answer
-
−19
20) 33+(−41)
21) 57+20
- Answer
-
77
22) 66+110
23) −48+127
- Answer
-
79
24) −48+92
In Exercises 25-32, find the difference.
25) −20−(−10)
- Answer
-
−10
26) −20−(−20)
27) −62−7
- Answer
-
−69
28) −82−62
29) −77−26
- Answer
-
−103
30) −96−92
31) −7−(−16)
- Answer
-
9
32) −20−(−5)
In Exercises 33-40, compute the exact value.
33) (−8)6
- Answer
-
262144
34) (−3)5
35) (−7)5
- Answer
-
−16807
36) (−4)6
37) (−9)2
- Answer
-
81
38) (−4)2
39) (−4)4
- Answer
-
256
40) (−5)4
In Exercises 41-52, use your graphing calculator to compute the given expression.
41) −562−1728
- Answer
-
−2290
42) −3125−(−576)
43) −400−(−8225)
- Answer
-
7825
44) −8176+578
45) (−856)(232)
- Answer
-
−198592
46) (−335)(−87)
47) (−815)(−3579)
- Answer
-
2916885
48) (753)(−9753)
49) (−18)3
- Answer
-
−5832
50) (−16)4
51) (−13)5
- Answer
-
−371293
52) (−15)6
1.2 Order of Operations
In Exercises 1-18, simplify the given expression.
1) −12+6(−4)
- Answer
-
−36
2) 11+11(7)
3) −(−2)5
- Answer
-
32
4) −(−5)3
5) −|−40|
- Answer
-
−40
6) −|−42|
7) −24/(−6)(−1)
- Answer
-
−4
8) 45/(−3)(3)
9) −(−50)
- Answer
-
50
10) −(−30)
11) −35
- Answer
-
−243
12) −32
13) 48÷4(6)
- Answer
-
72
14) 96÷6(4)
15) −52−8(−8)
- Answer
-
12
16) −8−7(−3)
17) (−2)4
- Answer
-
16
18) (−4)4
In Exercises 19-42, simplify the given expression.
19) 9−3(2)2
- Answer
-
−3
20) −4−4(2)2
21) 17−10|13−14|
- Answer
-
7
22) 18−3|−20−5|
23) −4+5(−4)3
- Answer
-
−324
24) 3+3(−4)3
25) 8+5(−1−6)
- Answer
-
−27
26) 8+4(−5−5)
27) (10−8)2−(7−5)3
- Answer
-
−4
28) (8−10)2−(4−5)3
29) 6−9(6−4(9−7))
- Answer
-
24
30) 4−3(3−5(7−2))
31) −6−5(4−6)
- Answer
-
4
32) −5−5(−7−7)
33) 9+(9−6)3−5
- Answer
-
31
34) 12+(8−3)3−6
35) −5+3(4)2
- Answer
-
43
36) 2+3(2)2
37) 8−(5−2)3+6
- Answer
-
−13
38) 9−(12−11)2+4
39) |6−15|−|−17−11|
- Answer
-
−19
40) |−18−19|−|−3−12|
41) 5−5(5−6(6−4))
- Answer
-
40
42) 4−6(4−7(8−5))
In Exercises 43-58, evaluate the expression at the given values of x and y.
43) 4x2+3xy+4y2 at x=−3 and y=0
- Answer
-
36
44) 3x2−3xy+2y2 at x=4 and y=−3
45) −8x+9 at x=−9
- Answer
-
81
46) −12x+10 at x=2
47) −5x2+2xy−4y2 at x=5 and y=0
- Answer
-
−125
48) 3x2+3xy−5y2 at x=0 and y=3
49) 3x2+3x−4 at x=5
- Answer
-
86
50) 2x2+6x−5 at x=6
51) −2x2+2y2 at x=1 and y=−2
- Answer
-
6
52) −5x2+5y2 at x=−4 and y=0
53) −3x2−6x+3 at x=2
- Answer
-
−21
54) −7x2+9x+5 at x=−7
55) −6x−1 at x=1
- Answer
-
−7
56) 10x+7 at x=9
57) 3x2−2y2 at x=−3 and y=−2
- Answer
-
19
58) −3x2+2y2 at x=2 and y=2
59) Evaluate a2+b2a+b at a=27 and b=−30.
- Answer
-
−543
60) Evaluate a2+b2a+b at a=−63 and b=77.
61) Evaluate a+bc−d at a=−42, b=25, c=26, and d=43.
- Answer
-
1
62) Evaluate a+bc−d at a=38, b=42, c=10, and d=50.
63) Evaluate a−bcd at a=−7, b=48, c=5, and d=11.
- Answer
-
−1
64) Evaluate a−bcd at a=−46, b=46, c=23, and d=2.
65) Evaluate the expressions a2+b2 and (a+b)2 at a=3 and b=4. Do the expressions produce the same results?
- Answer
-
No
66) Evaluate the expressions a2b2 and (ab)2 at a=3 and b=4. Do the expressions produce the same results?
67) Evaluate the expressions |a||b| and |ab| at a=−3 and b=5. Do the expressions produce the same results?
- Answer
-
Yes
68) Evaluate the expressions |a|+|b| and |a+b| at a=−3 and b=5. Do the expressions produce the same results?
In Exercises 69-72, use a graphing calculator to evaluate the given expression.
69) −236−324(−576+57)
- Answer
-
167920
70) −443+27(−414−22)
71) 270−900300−174
- Answer
-
−5
72) 3000−952144−400
73) Use a graphing calculator to evaluate the expression a2+b2a+b at a=−93 and b=84 by first storing −93 in the variable A and 84 in the variable B, then entering the expression (A2+B2)/(A+B).
- Answer
-
−1745
74) Use a graphing calculator to evaluate the expression a2+b2a+b at a=−76 and b=77 by first storing −76 in the variable A and 77 in the variable B, then entering the expression (A2+B2)/(A+B).
75) The formula F=95C+32 will change a Celsius temperature to a Fahrenheit temperature. Given that the Celsius temperature is C=60∘C, find the equivalent Fahrenheit temperature.
- Answer
-
140∘F
76) The surface area of a cardboard box is given by the formulaS=2WH+2LH+2LW where W and L are the width and length of the base of the box and H is its height. If W=2 centimeters, L=8 centimeters, and H=2 centimeters, find the surface area of the box.
77) The kinetic energy (in joules) of an object having mass m (in kilograms) and velocity v (in meters per second) is given by the formula K=12mv2. Given that the mass of the object is m=7 kilograms and its velocity is v=50 meters per second, calculate the kinetic energy of the object.
- Answer
-
8750 joules
78) The area of a trapezoid is given by the formula A=12(b1+b2)h, where b1 and b2 are the lengths of the parallel bases and h is the height of the trapezoid. If the lengths of the bases are 21 yards and 11 yards, respectively, and if the height is 22 yards, find the area of the trapezoid.
1.3 The Rational Numbers
In Exercises 1-6, reduce the given fraction to lowest terms by dividing numerator and denominator by the their greatest common divisor.
1) 2050
- Answer
-
25
2) 3638
3) 1048
- Answer
-
524
4) 3614
5) 2445
- Answer
-
815
6) 2136
In Exercises 7-12, reduce the given fraction to lowest terms by prime factoring both numerator and denominator and canceling common factors.
7) 153170
- Answer:
-
910
8) 198144
In Exercises 9-24, simplify each of the following expressions as much as possible.
9) 188141
- Answer
-
43
10) 171144
11) 159106
- Answer
-
32
12) 140133
In Exercises 13-18, for each of the following problems, multiply numerators and denominators, then prime factor and cancel to reduce your answer to lowest terms.
13) 208⋅(−1813)
- Answer
-
−4513
14) 1816⋅(−25)
15) −194⋅(−1813)
- Answer
-
17126
16) −32⋅(−146)
17) −168⋅196
- Answer
-
−193
18) −144⋅717
In Exercises 19-24, for each of the following problems, first prime factor all numerators and denominators, then cancel. After canceling, multiply numerators and denominators.
19) −56⋅(−1249)
- Answer
-
1049
20) −3617⋅(−2146)
21) −2110⋅1255
- Answer
-
−126275
22) −4913⋅5251
23) 5529⋅(−5411)
- Answer
-
−27029
24) 713⋅(−5549)
In Exercises 25-30, divide. Be sure your answer is reduced to lowest terms.
25) 5039÷(−558)
- Answer
-
−58039
26) 3125÷(−45)
27) −6017÷3431
- Answer
-
−930289
28) −2728÷4523
29) −710÷(−1328)
- Answer
-
9865
30) −413÷(−4835)
In Exercises 31-38, add or subtract the fractions, as indicated, and simplify your result.
31) −56+14
- Answer
-
−712
32) −17+58
33) −89+(−13)
- Answer
-
−119
34) −13+(−12)
35) −14−(−29)
- Answer
-
−136
36) −12−(−18)
37) −89−45
- Answer
-
−7645
38) −47−13
In Exercises 39-52, simplify the expression.
39) 89−|52−25|
- Answer
-
−10990
40) 85−|76−12|
41) (−76)2+(−12)(−53)
- Answer
-
7936
42) (32)2+(−12)(58)
43) (−95)(−97)+(85)(−12)
- Answer
-
5335
44) (−13)(−57)+(23)(−67)
45) −58+72(−92)
- Answer
-
−1318
46) 32+92(−14)
47) (−75)(92)−(−25)2
- Answer
-
−32350
48) (34)(23)−(14)2
49) 65−25(−49)
- Answer
-
6245
50) 32−56(−13)
51) (23)(−87)−(47)(−98)
- Answer
-
−542
52) (−32)(13)−(58)(−18)
In Exercises 53-70, evaluate the expression at the given values.
53) xy−z2 at x=−1/2,y=−1/3, and z=5/2
- Answer
-
−7312
54) xy−z2 at x=−1/3,y=5/6, and z=1/3
55) −5x2+2y2 at x=3/4 and y=−1/2
- Answer
-
−3716
56) −2x2+4y2 at x=4/3 and y=−3/2
57) 2x2−2xy−3y2 at x=3/2 and y=−3/4
- Answer
-
8116
58) 5x2−4xy−3y2 at x=1/5 and y=−4/3
59) x+yz at x=−1/3,y=1/6, and z=2/5
- Answer
-
−25
60) x+yz at x=1/2,y=7/4, and z=2 / 3
61) a b+b c at a=-4 / 7, b=7 / 5, and c=-5 / 2
- Answer
-
-\dfrac{43}{10}
62) a b+b c at a=-8 / 5, b=7 / 2, and c=-9 / 7
63) x^{3} at x=-1 / 2
- Answer
-
-\dfrac{1}{8}
64) x^{2} at x=-3 / 2
65) x-y z at x=-8 / 5, y=1 / 3, and z=-8 / 5
- Answer
-
-\dfrac{16}{15}
66) x-y z at x=2 / 3, y=2 / 9, and z=-3 / 5
67) -x^{2} at x=-8 / 3
- Answer
-
-\dfrac{64}{9}
68) -x^{4} at x=-9 / 7
69) x^{2}+y z at x=7 / 2, y=-5 / 4, and z=-5 / 3
- Answer
-
\dfrac{43}{3}
70) x^{2}+y z at x=1 / 2, y=7 / 8, and z=-5 / 9
71) a + b/c + d is equivalent to which of the following mathematical expressions?
- a+\dfrac{b}{c}+d
- \dfrac{a+b}{c+d}
- \dfrac{a+b}{c}+d
- a+\dfrac{b}{c+d}
- Answer
-
(a)
72) ( a+b)/c+d is equivalent to which of the following mathematical expressions?
- a+\dfrac{b}{c}+d
- \dfrac{a+b}{c+d}
- \dfrac{a+b}{c}+d
- a+\dfrac{b}{c+d}
73) a +b/(c+d) is equivalent to which of the following mathematical expressions?
- a+\dfrac{b}{c}+d
- \dfrac{a+b}{c+d}
- \dfrac{a+b}{c}+d
- a+\dfrac{b}{c+d}
- Answer
-
(d)
74) ( a + b)/(c + d) is equivalent to which of the following mathematical expressions?
- a+\dfrac{b}{c}+d
- \dfrac{a+b}{c+d}
- \dfrac{a+b}{c}+d
- a+\dfrac{b}{c+d}
75) Use the graphing calculator to reduce 4125/1155 to lowest terms.
- Answer
-
\dfrac{25}{7}
76) Use the graphing calculator to reduce 2100/945 to lowest terms.
77) Use the graphing calculator to simplify: \dfrac{45}{84} \cdot \dfrac{70}{33}
- Answer
-
\dfrac{25}{22}
78) Use the graphing calculator to simplify: \dfrac{34}{55}+\dfrac{13}{77}
79) Use the graphing calculator to simplify: -\dfrac{28}{33} \div\left(-\dfrac{35}{44}\right)
- Answer
-
\dfrac{16}{15}
80) Use the graphing calculator to simplify: -\dfrac{11}{84}-\left(-\dfrac{11}{36}\right)
1.4 Decimal Notation
In Exercises 1-33, simplify the given expressions.
1) -2.835+(-8.759)
- Answer
-
-11.594
2) -5.2+(-2)
3) 19.5-(-1.6)
- Answer
-
21.1
4) 9.174-(-7.7)
5) -2-0.49
- Answer
-
-2.49
6) -50.86-9
7) (-1.2)(-0.05)
- Answer
-
0.06
8) (-7.9)(0.9)
9) -0.13+23.49
- Answer
-
23.36
10) -30.82+75.93
11) 16.4+(-41.205)
- Answer
-
-24.805
12) -7.8+3.5
13) -0.4508 \div 0.49
- Answer
-
-0.92
14) 0.2378 \div(-0.29)
15) (-1.42)(-3.6)
- Answer
-
5.112
16) (-8.64)(4.6)
17) 2.184 \div(-0.24)
- Answer
-
-9.1
18) 7.395 \div(-0.87)
19) (-7.1)(-4.9)
- Answer
-
34.79
20) (5.8)(-1.9)
21) 7.41 \div(-9.5)
- Answer
-
-0.78
22) -1.911 \div 4.9
23) -24.08 \div 2.8
- Answer
-
-8.6
24) 61.42 \div(-8.3)
25) (-4.04)(-0.6)
- Answer
-
2.424
26) (-5.43)(0.09)
27) -7.2-(-7)
- Answer
-
-0.2
28) -2.761-(-1.5)
29) (46.9)(-0.1)
- Answer
-
-4.69
30) (-98.9)(-0.01)
31) (86.6)(-1.9)
- Answer
-
-164.54
32) (-20.5)(8.1)
In Exercises 33-60, simplify the given expression.
33) -4.3-(-6.1)(-2.74)
- Answer
-
-21.014
34) -1.4-1.9(3.36)
35) -3.49+|-6.9-(-15.7)|
- Answer
-
5.31
36) 1.3+|-13.22-8.79|
37) |18.9-1.55|-|-16.1-(-17.04)|
- Answer
-
16.41
38) |-17.5-16.4|-|-15.58-(-4.5)|
39) 8.2-(-3.1)^{3}
- Answer
-
37.991
40) -8.4-(-6.8)^{3}
41) 5.7-(-8.6)(1.1)^{2}
- Answer
-
16.106
42) 4.8-6.3(6.4)^{2}
43) (5.67)(6.8)-(1.8)^{2}
- Answer
-
35.316
44) (-8.7)(8.3)-(-1.7)^{2}
45) 9.6+(-10.05-13.16)
- Answer
-
-13.61
46) -4.2+(17.1-14.46)
47) 8.1+3.7(5.77)
- Answer
-
29.449
48) 8.1+2.3(-5.53)
49) 7.5+34.5 /(-1.6+8.5)
- Answer
-
12.5
50) -8.8+0.3 /(-7.2+7.3)
51) (8.0+2.2) / 5.1-4.6
- Answer
-
\(-2.6\)
52) (35.3+1.8) / 5.3-5.4
53) -18.24-|-18.5-19.7|
- Answer
-
-56.44
54) 16.8-|4.58-17.14|
55) -4.37-|-8.97|
- Answer
-
-13.34
56) 4.1-|-8.4|
57) 7.06-(-1.1-4.41)
- Answer
-
12.57
58) 7.74-(0.9-7.37)
59) -2.2-(-4.5)^{2}
- Answer
-
-22.45
60) -2.8-(-4.3)^{2}
61) Evaluate a−b^2 at a =−2.9 and b =−5.4.
- Answer
-
-32.06
62) Evaluate a−b^3 at a =−8.3 and b =−6.9.
63) Evaluate a+|b−c| at a =−19.55, b =5.62, and c = −5.21.
- Answer
-
-8.72
64) Evaluate a −| b − c| at a = −8.37, b = −8.31, and c = 17.5.
65) Evaluate a−bc at a =4 .3, b =8 .5, and c =1 .73.
- Answer
-
-10.405
66) Evaluate a + bc at a =4 .1, b =3.1, and c =−7.03.
67) Evaluate a − (b − c) at a = −7.36, b = −17.6, and c = −19.07.
- Answer
-
-8.83
68) Evaluate |a- b|−| c − d| at a =1 .91, b = 19.41, c = −11.13, and d = 4.3.
69) Evaluate a+b/(c+d) at a =4.7, b = 54.4, c =1.7, and d =5.1.
- Answer
-
12.7
70) Evaluate (a + b)/c − d at a = −74.2, b =3.8, c =8.8, and d =7.5.
71) Evaluate ab −c^2 at a = −2.45, b =5.6, and c =−3.2.
- Answer
-
-23.96
72) Evaluate a +( b − c) at a = 12 .6, b = −13.42, and c = −15.09.
73) Evaluate a−|b| at a =−4.9 and b =−2.67.
- Answer
-
-7.57
74) Evaluate a−bc^2 at a = −3.32, b = −5.4, and c =−8.5.
75) Use your graphing calculator to evaluate 3.5−1.7x at x =1 .25. Round your answer to the nearest tenth.
- Answer
-
1.4
76) Use your graphing calculator to evaluate 2.35x−1.7 at x = −12.23. Round your answer to the nearest tenth.
77) Use your graphing calculator to evaluate 1.7x^2−3.2x+4.5 at x =2.86. Round your answer to the nearest hundredth.
- Answer
-
9.25
78) Use your graphing calculator to evaluate 19.5−4.4x−1.2x^2 at x = −1.23. Round your answer to the nearest hundredth.
79) Use your graphing calculator to evaluate −18.6+4.4x^2 −3.2x^3 at x =1.27. Round your answer to the nearest thousandth.
- Answer
-
-4.948
80) Use your graphing calculator to evaluate −4.4x^3−7.2x−18.2 at x =2.29. Round your answer to the nearest thousandth.
1.5 Algebraic Expressions
In Exercises 1-6, use the associative property of multiplication to simplify the expression.
Note: You must show the regrouping step using the associative property on your homework.
1) -3(6 a)
- Answer
-
-18 a
2) -10(2 y)
3) -9(6 a b)
- Answer
-
-54 a b
4) 8(5 x y)
5) -7\left(3 x^{2}\right)
- Answer
-
-21 x^{2}
6) -6(8 z)
In Exercises 7-18, use the distributive property to expand the given expression.
7) 4(3 x-7 y)
- Answer
-
12 x-28 y
8) -4(5 a+2 b)
9) -6(-y+9)
- Answer
-
6 y-54
10) 5(-9 w+6)
11) -9(s+9)
- Answer
-
-9 s-81
12) 6(-10 y+3)
13) -(-3 u-6 v+8)
- Answer
-
3 u+6 v-8
14) -(3 u-3 v-9)
15) -8\left(4 u^{2}-6 v^{2}\right)
- Answer
-
-32 u^{2}+48 v^{2}
16) -5(8 x-9 y)
17) -(7 u+10 v+8)
- Answer
-
-7 u-10 v-8
18) -(7 u-8 v-5)
In Exercises 19-26, combine like terms by first using the distributive property to factor out the common variable part, and then simplifying.
Note: You must show the factoring step on your homework.
19) -19 x+17 x-17 x
- Answer
-
-19 x
20) 11 n-3 n-18 n
21) 14 x^{3}-10 x^{3}
- Answer
-
4 x^{3}
22) -11 y^{3}-6 y^{3}
23) 9 y^{2} x+13 y^{2} x-3 y^{2} x
- Answer
-
19 y^{2} x
24) 4 x^{3}-8 x^{3}+16 x^{3}
25) 15 m+14 m
- Answer
-
29 m
26) 19 q+5 q
In Exercises 27-38, simplify each of the following expressions by rearranging and combining like terms mentally.
Note: This means write down the problem, then write down the answer. No work.
27) 9-17 m-m+7
- Answer
-
16-18 m
28) -11+20 x+16 x-14
29) -6 y^{2}-3 x^{3}+4 y^{2}+3 x^{3}
- Answer
-
-2 y^{2}
30) 14 y^{3}-11 y^{2} x+11 y^{3}+10 y^{2} x
31) -5 m-16+5-20 m
- Answer
-
-25 m-11
32) -18 q+12-8-19 q
33) -16 x^{2} y+7 y^{3}-12 y^{3}-12 x^{2} y
- Answer
-
-28 x^{2} y-5 y^{3}
34) 10 x^{3}+4 y^{3}-13 y^{3}-14 x^{3}
35) -14 r+16-7 r-17
- Answer
-
-21 r-1
36) -9 s-5-10 s+15
37) 14-16 y-10-13 y
- Answer
-
4-29 y
38) 18+10 x+3-18 x
In Exercises 39-58, use the distributive property to expand the expression, then combine like terms mentally.
39) 3-(-5 y+1)
- Answer
-
2+5 y
40) 5-(-10 q+3)
41) -\left(9 y^{2}+2 x^{2}\right)-8\left(5 y^{2}-6 x^{2}\right)
- Answer
-
-49 y^{2}+46 x^{2}
42) -8\left(-8 y^{2}+4 x^{3}\right)-7\left(3 y^{2}+x^{3}\right)
43) 2(10-6 p)+10(-2 p+5)
- Answer
-
70-32 p
44) 2(3-7 x)+(-7 x+9)
45) 4(-10 n+5)-7(7 n-9)
- Answer
-
-89 n+83
46) 3(-9 n+10)+6(-7 n+8)
47) -4 x-4-(10 x-5)
- Answer
-
-14 x+1
48) 8 y+9-(-8 y+8)
49) -7-(5+3 x)
- Answer
-
-12-3 x
50) 10-(6-4 m)
51) -8(-5 y-8)-7(-2+9 y)
- Answer
-
-23 y+78
52) 6(-3 s+7)-(4-2 s)
53) 4\left(-7 y^{2}-9 x^{2} y\right)-6\left(-5 x^{2} y-5 y^{2}\right)
- Answer
-
2 y^{2}-6 x^{2} y
54) -6\left(x^{3}+3 y^{2} x\right)+8\left(-y^{2} x-9 x^{3}\right)
55) 6 s-7-(2-4 s)
- Answer
-
10 s-9
56) 4 x-9-(-6+5 x)
57) 9(9-10 r)+(-8-2 r)
- Answer
-
73-92 r
58) -7(6+2 p)+5(5-5 p)
In Exercises 59-64, use the distributive property to simplify the given expression.
59) -7 x+7(2 x-5[8 x+5])
- Answer
-
-273 x-175
60) -9 x+2(5 x+6[-8 x-3])
61) 6 x-4(-3 x+2[5 x-7])
- Answer
-
-22 x+56
62) 2 x+4(5 x-7[8 x+9])
63) -8 x-5(2 x-3[-4 x+9])
- Answer
-
-78 x+135
64) 8 x+6(3 x+7[-9 x+5])
Contributors and Attributions
David Arnold (Retired Professor (Mathematics) at College of the Redwoods)