4.10: Exercise Supplement
( \newcommand{\kernel}{\mathrm{null}\,}\)
Algebraic Expressions
For the following problems, write the number of terms that appear, then write the terms.
4x2+7x+12
- Answer
-
three: 4x2,7x,12
14y6
c+8
- Answer
-
two: c,8
8
List, if any should appear, the common factors for the following problems.
a2+4a2+6a2
- Answer
-
a2
9y4−18y4
12x2y3+36y3
- Answer
-
12y3
6(a+4)+12(a+4)
4(a+2b)+6(a+2b)
- Answer
-
2(a+2b)
17x2y(z+4)+51y(z+4)
6a2b3c+5x2y
- Answer
-
no common factors
For the following problems, answer the question of how many.
x's in 9x?
(a+b)'s in 12(a+b)?
- Answer
-
12
a4's in 6a4
c3's in 2a2bc3?
- Answer
-
2a2b
(2x+3y)2's in 5(x+2y)(2x+3y)3?
For the following problems, a term will be given followed by a group of its factors. List the coefficient of the given group of factors.
8z,z
- Answer
-
8
16a3b2c4,c4
7y(y+3),7y
- Answer
-
(y+3)
(−5)a5b5c5,bc
Equations
For the following problems, observe the equations and write the relationship being expressed.
a=3b
- Answer
-
The value of a is equal to three times the value of b.
r=4t+11
f=12m2+6g
- Answer
-
The value of f is equal to six times g more then one half times the value of m squared.
x=5y3+2y+6
P2=ka3
- Answer
-
The value of P squared is equal to the value of a cubed times k.
Use numerical evaluation to evaluate the equations for the following problems.
C=2πr. Find C is π is approximated by 3.14 and r=6
I=ER. Find I is E=20 and R=2.
- Answer
-
10
I=prt. Find I if p=1000, r=0.06, and t=3.
E=mc2. Find E if m=120 and c=186,000.
- Answer
-
4.1515×1012
z=x−us. Find z if x=42, u=30, and s=12.
R=24CP(n+1). Find R if C=35, P=300, and n=19.
- Answer
-
750 or 0.14
Classification of Expressions and Equations
For the following problems, classify each of the polynomials as a monomial, binomial, or trinomial. State the degree of each polynomial and write the numerical coefficient of each term.
2a+9
4y3+3y+1
- Answer
-
trinomial, cubic; 4, 3, 1
10a4
147
- Answer
-
monomial; zero; 147
4xy+2yz2+6x
9ab2c2+10a3b2c5
- Answer
-
binomial; tenth; 9, 10
(2xy3)0,xy3≠0
Why is the expression 4x3x−7 not a polynomial?
- Answer
-
... because there is a variable in the denominator
Why is the expression 5a34 not a polynomial?
For the following problems, classify each of the equations by degree. If the term linear, quadratic, or cubic applies, use it.
3y+2x=1
- Answer
-
linear
4a2−5a+8=0
y−x−z+4w=21
- Answer
-
linear
5x2+2x2−3x+1=19
(6x3)0+5x2=7
- Answer
-
Quadratic
Combining Polynomials Using Addition and Subtraction- Special Binomial Products
Simplify the algebraic expressions for the following problems.
4a2b+8a2b−a2b
21x2y3+3xy+x2y3+6
- Answer
-
22x2y3+3xy+6
7(x+1)+2x−6
2(3y2+4y+4)+5y2+3(10y+2)
- Answer
-
11y2+38y+14
5[3x+7(2x2+3x+2)+5]−10x2+4(3x2+x)
83[4y3+y+2]+6(y3+2y2)−24y3−10y2−3
- Answer
-
120y3+86y2+24y+45
4a2bc3+5abc3+9abc3+7a2bc2
x(2x+5)+3x2−3x+3
- Answer
-
5x2+2x+3
4k(3k2+2k+6)+k(5k2+k)+16
25[6(b+2a+c2)]
- Answer
-
60c2+120a+60b
9x2y(3xy+4x)−7x3y2−30x3y+5y(x3y+2x)
3m[5+2m(m+6m2)]+m(m2+4m+1)
- Answer
-
36m4+7m3+4m2+16m
2r[4(r+5)−2r−10]+6r(r+2)
abc(3abc+c+b)+6a(2bc+bc2)
- Answer
-
3a2b2c2+7abc2+ab2c+12abc
s10(2s5+3s4+4s3+5s2+2s+2)−s15+2s14+3s(s12+4s11)−s10
6a4(a2+5)
- Answer
-
6a6+30a4
2x2y4(3x2y+4xy+3y)
5m6(2m7+3m4+m2+m+1
- Answer
-
10m13+15m10+5m8+5m7+5m6
a3b3c4(4a+2b+3c+ab+ac+bc2
(x+2)(x+3)
- Answer
-
x2+5x+6
(y+4)(y+5)
(a+1)(a+3)
- Answer
-
a2+4a+3
(3x+4)(2x+6)
4xy−10xy
- Answer
-
−6xy
5ab2−3(2ab2+4)
7x4−15x4
- Answer
-
−8x4
5x2+2x−3−7x2−3x−4−2x2−11
4(x−8)
- Answer
-
4x−32
7x(x2−x+3)
−3a(5a−6)
- Answer
-
−15a2+18a
4x2y2(2x−3y−5)−16x3y2−3x2y3
−5y(y2−3y−6)−2y(3y2+7)+(−2)(−5)
- Answer
-
−11y3+15y2+16y+10
−[−(−4)]
−[−(−−[−(5)])]
- Answer
-
−5
x2+3x−4−4x2−5x−9+2x2−6
4a2b−3b2−5b2−8q2b−10a2b−b2
- Answer
-
−6a2b−8q2b−9b2
2x2−x−(3x2−4x−5)
3(a−1)−4(a+6)
- Answer
-
−a−27
−6(a+2)−7(a−4)+6(a−1)
Add −3x+4 to 5x−8.
- Answer
-
2x−4
Add 4(x2−2x−3) to −6(x2−5).
Subtract 3 times (2x−1) from 8 times (x−4)
- Answer
-
2x−29
(x+4)(x−6)
(x−3)(x−8)
- Answer
-
x2−11x+24
(2a−5)(5a−1)
(8b+2c)(2b−c)
- Answer
-
16b2−4bc−2c2
(a−3)2
(3−a)2
- Answer
-
a2−6a+9
(x−y)2
(6x−4)2
- Answer
-
36x2−48x+16
(3a−5b)2
(−x−y)2
- Answer
-
x2+2xy+y2
(k+6)(k−6)
(m+1)(m−1)
- Answer
-
m2−1
(a−2)(a+2)
(3c+10)(3c−10)
- Answer
-
9c2−100
(4a+3b)(4a−3b)
(5+2b)(5−2b)
- Answer
-
25−4b2
(2y+5)(4y+5)
(y+3a)(2y+a)
- Answer
-
2y2+7ay+3a2
(6+a)(6−3a)
(x2+2)(x2−3)
- Answer
-
x4−x2−6
6(a−3)(a+8)
8(2y−4)(3y+8)
- Answer
-
48y2+32y−256
x(x−7)(x+4)
m2n(m+n)(m+2n)
- Answer
-
m4n+3m3n2+2m2n3
(b+2)(b2−2b+3)
3p(p2+5p+4)(p2+2p+7)
- Answer
-
3p5+21p4+63p3+129p2+84p
(a+6)2
(x−2)2
- Answer
-
x2−4x+4
(2x−3)2
(x2+y)2
- Answer
-
x4+2x2y+y2
(2m−5n)2
(3x2y3−4x4y)2
- Answer
-
9x4y6−24x6y4+16x8y2
(a−2)4
Terminology Associated with Equations
Find the domain of the equations for the following problems.
y=8x+7
- Answer
-
all real numbers
y=5x2−2x+6
y=4x−2
- Answer
-
all real numbers except 2
m=−2xh
z=4x+5y+10
- Answer
-
x can equal any real number; y can equal any number except −10