Skip to main content
Mathematics LibreTexts

6.10: Exercise Supplement

  • Page ID
    49429
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise Supplement

    Finding the factors of a Monomial

    For the following problems, the first quantity represents the product and the second quantity represents a factor. Find the other factor.

    Exercise \(\PageIndex{1}\)

    \(32a^4b,2b\)

    Answer

    \(16a^4\)

    Exercise \(\PageIndex{2}\)

    \(35x^3y^2,7x^3\)

    Exercise \(\PageIndex{3}\)

    \(44a^2b^2c,11b^2\)

    Answer

    \(4a^2c\)

    Exercise \(\PageIndex{4}\)

    \(50m^3n^5p^4q,10m^3q\)

    Exercise \(\PageIndex{5}\)

    \(51(a+1)^2(b+3)^4,3(a+1)\)

    Answer

    \(17(a+1)(b+3)^4\)

    Exercise \(\PageIndex{6}\)

    \(−26(x+2y)^3(x−y)^2,−13(x−y)\)

    Exercise \(\PageIndex{7}\)

    \(−8x^5y^4(x+y)^4(x+3y)^3,−2x(x+y)(x+3y)\)

    Answer

    \(4x^4y^4(x+y)^3(x+3y)^2\)

    Exercise \(\PageIndex{8}\)

    \(−(6a−5b)^{10}(7a−b)^8(a+3b)^7,−(6a−5b)^7(7a−b)^7(a+3b)^7\)

    Exercise \(\PageIndex{9}\)

    \(12x^{n+6}y^{2n-5}, -3x^{n+1}y^{n+3}\)

    Answer

    \(−4x^5y^{n−8}\)

    Exercise \(\PageIndex{10}\)

    \(−400a^{3n+10}b^{n−6}c^{4n+7},20a^{2n+8}c^{2n−1}\)

    Exercise \(\PageIndex{11}\)

    \(16x−32,16\)

    Answer

    \((x−2)\)

    Exercise \(\PageIndex{12}\)

    \(35a−45,513\)

    Exercise \(\PageIndex{13}\)

    \(24a^2−6a,6a\)

    Answer

    \(4a−1\)

    Exercise \(\PageIndex{14}\)

    \(88x^4−33x^3+44x^2+55x,11x\)

    Exercise \(\PageIndex{15}\)

    \(9y^3−27y^2+36y,−3y\)

    Answer

    \(−3y^2+9y−12\)

    Exercise \(\PageIndex{16}\)

    \(4m^6−16m^4+16m^2,4m\)

    Exercise \(\PageIndex{17}\)

    \(−5x^4y^3+10x^3y^2−15x^2y^2,−5x^2y^2\)

    Answer

    \(x^2y−2x+3\)

    Exercise \(\PageIndex{18}\)

    \(−21a^5b^6c^4(a+2)^3+35a^5bc^5(a+2)^4,−7a^4b(a+2)^2\)

    Exercise \(\PageIndex{19}\)

    \(−x−2y−c^2,−1\)

    Answer

    \(x+2y+c^2\)

    Exercise \(\PageIndex{20}\)

    \(a+3b,−1\)

    Factoring a Monomial from a Polynomial ([link]) - The Greatest Common Factor ([link])

    For the following problems, factor the polynomials.

    Exercise \(\PageIndex{21}\)

    \(8a+4\)

    Answer

    \(4(2a+1)\)

    Exercise \(\PageIndex{22}\)

    \(10x+10\)

    Exercise \(\PageIndex{23}\)

    \(3y^2+27y\)

    Answer

    \(3y(y+9)\)

    Exercise \(\PageIndex{24}\)

    \(6a^2b^2+18a^2\)

    Exercise \(\PageIndex{25}\)

    \(21(x+5)+9\)

    Answer

    \(3(7x+38)\)

    Exercise \(\PageIndex{26}\)

    \(14(2a+1)+35\)

    Exercise \(\PageIndex{27}\)

    \(ma^3−m\)

    Answer

    \(m(a^3−1)\)

    Exercise \(\PageIndex{28}\)

    \(15y^3−24y+24\)

    Exercise \(\PageIndex{29}\)

    \(r^2(r+1)^3−3r(r+1)^2+r+1\)

    Answer

    \((r+1)[r^2(r+1)^2−3r(r+1)+1]\)

    Exercise \(\PageIndex{30}\)

    \(Pa+Pb+Pc\)

    Exercise \(\PageIndex{31}\)

    \((10−3x)(2+x)+3(10−3x)(7+x)\)

    Answer

    \((10−3x)(23+4x)\)

    Factoring by Grouping

    For the following problems, use the grouping method to factor the polynomials. Some may not be factorable.

    Exercise \(\PageIndex{32}\)

    \(4ax+x+4ay+y\)

    Exercise \(\PageIndex{33}\)

    \(xy+4x−3y−12\)

    Answer

    \((x−3)(y+4)\)

    Exercise \(\PageIndex{34}\)

    \(2ab−8b−3ab−12a\)

    Exercise \(\PageIndex{35}\)

    \(a^2−7a+ab−7b\)

    Answer

    \((a+b)(a−7)\)

    Exercise \(\PageIndex{36}\)

    \(m^2+5m+nm+5n\)

    Exercise \(\PageIndex{37}\)

    \(r^2+rs−r−s\)

    Answer

    \((r−1)(r+s)\)

    Exercise \(\PageIndex{38}\)

    \(8a^2bc+20a^2bc+10a^3b^3c+25a^3b^3\)

    Exercise \(\PageIndex{39}\)

    \(a(a+6)−(a+6)+a(a−4)−(a−4)\)

    Answer

    \(2(a+1)(a−1)\)

    Exercise \(\PageIndex{40}\)

    \(a(2x+7)−4(2x+7)+a(x−10)−4(x−10)\)

    Factoring Two Special Products - Factoring Trinomials with Leading Coefficient Other Than 1

    For the following problems, factor the polynomials, if possible.

    Exercise \(\PageIndex{41}\)

    \(m^2−36\)

    Answer

    \((m+6)(m−6)\)

    Exercise \(\PageIndex{42}\)

    \(r^2−81\)

    Exercise \(\PageIndex{43}\)

    \(a^2+8a+16\)

    Answer

    \((a+4)^2\)

    Exercise \(\PageIndex{44}\)

    \(c^2+10c+25\)

    Exercise \(\PageIndex{45}\)

    \(m^2+m+1\)

    Answer

    not factorable

    Exercise \(\PageIndex{46}\)

    \(r^2−r−6\)

    Exercise \(\PageIndex{47}\)

    \(a^2+9a+20\)

    Answer

    \((a+5)(a+4)\)

    Exercise \(\PageIndex{48}\)

    \(s^2+9s+18\)

    Exercise \(\PageIndex{49}\)

    \(x^2+14x+40\)

    Answer

    \((x+10)(x+4)\)

    Exercise \(\PageIndex{50}\)

    \(a^2−12a+36\)

    Exercise \(\PageIndex{51}\)

    \(n^2−14n+49\)

    Answer

    \((n−7)^2\)

    Exercise \(\PageIndex{52}\)

    \(a^2+6a+5\)

    Exercise \(\PageIndex{53}\)

    \(a^2−9a+20\)

    Answer

    \((a−5)(a−4)\)

    Exercise \(\PageIndex{54}\)

    \(6x^2+5x+1\)

    Exercise \(\PageIndex{55}\)

    \(4a^2−9a−9\)

    Answer

    \((4a+3)(a−3)\)

    Exercise \(\PageIndex{56}\)

    \(4x^2+7x+3\)

    Exercise \(\PageIndex{57}\)

    \(42a^2+5a−2\)

    Answer

    \((6a−1)(7a+2)\)

    Exercise \(\PageIndex{58}\)

    \(30y^2+7y−15\)

    Exercise \(\PageIndex{59}\)

    \(56m^2+26m+6\)

    Answer

    \(2(28m^2+13m+3)\)

    Exercise \(\PageIndex{60}\)

    \(27r^2−33r−4\)

    Exercise \(\PageIndex{61}\)

    \(4x^2+4xy−3y^2\)

    Answer

    \((2x+3y)(2x−y)\)

    Exercise \(\PageIndex{62}\)

    \(25a^2+25ab+6b^2\)

    Exercise \(\PageIndex{63}\)

    \(2x^2+6x−20\)

    Answer

    \(2(x−2)(x+5)\)

    Exercise \(\PageIndex{64}\)

    \(−2y^2+4y+48\)

    Exercise \(\PageIndex{65}\)

    \(x^3+3x^2−4x\)

    Answer

    \(x(x+4)(x−1)\)

    Exercise \(\PageIndex{66}\)

    \(3y^4−27y^3+24y^2\)

    Exercise \(\PageIndex{67}\)

    \(15a^2b^2−ab−2b\)

    Answer

    \(b(15a^2b−a−2)\)

    Exercise \(\PageIndex{68}\)

    \(4x^3−16x^2+16x\)

    Exercise \(\PageIndex{69}\)

    \(18a^2 - 6a + \dfrac{1}{2}\)

    Answer

    \((6a-1)(3a-\dfrac{1}{2})\)

    Exercise \(\PageIndex{70}\)

    \(a^4+16a^2b+16b^2\)

    Exercise \(\PageIndex{71}\)

    \(4x^2−12xy+9y^2\)

    Answer

    \((2x−3y)^2\)

    Exercise \(\PageIndex{72}\)

    \(49b^4−84b^2+36\)

    Exercise \(\PageIndex{73}\)

    \(r^6s^8+6r^3s^4p^2q^6+9p^4q^{12}\)

    Answer

    \((r^3s^4+3p^2q^6)^2\)

    Exercise \(\PageIndex{74}\)

    \(a^4−2a^2b−15b^2\)

    Exercise \(\PageIndex{75}\)

    \(81a^8b^{12}c^{10}−25x^{20}y^{18}\)

    Answer

    \((9a^4b^6c^5+5x^{10}y^9)(9a^4b^6c^5−5x^{10}y^9)\)


    This page titled 6.10: Exercise Supplement is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?