6.10: Exercise Supplement
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise Supplement
Finding the factors of a Monomial
For the following problems, the first quantity represents the product and the second quantity represents a factor. Find the other factor.
32a^4b,2b
- Answer
-
16a^4
35x^3y^2,7x^3
44a^2b^2c,11b^2
- Answer
-
4a^2c
50m^3n^5p^4q,10m^3q
51(a+1)^2(b+3)^4,3(a+1)
- Answer
-
17(a+1)(b+3)^4
−26(x+2y)^3(x−y)^2,−13(x−y)
−8x^5y^4(x+y)^4(x+3y)^3,−2x(x+y)(x+3y)
- Answer
-
4x^4y^4(x+y)^3(x+3y)^2
−(6a−5b)^{10}(7a−b)^8(a+3b)^7,−(6a−5b)^7(7a−b)^7(a+3b)^7
12x^{n+6}y^{2n-5}, -3x^{n+1}y^{n+3}
- Answer
-
−4x^5y^{n−8}
−400a^{3n+10}b^{n−6}c^{4n+7},20a^{2n+8}c^{2n−1}
16x−32,16
- Answer
-
(x−2)
35a−45,513
24a^2−6a,6a
- Answer
-
4a−1
88x^4−33x^3+44x^2+55x,11x
9y^3−27y^2+36y,−3y
- Answer
-
−3y^2+9y−12
4m^6−16m^4+16m^2,4m
−5x^4y^3+10x^3y^2−15x^2y^2,−5x^2y^2
- Answer
-
x^2y−2x+3
−21a^5b^6c^4(a+2)^3+35a^5bc^5(a+2)^4,−7a^4b(a+2)^2
−x−2y−c^2,−1
- Answer
-
x+2y+c^2
a+3b,−1
Factoring a Monomial from a Polynomial ([link]) - The Greatest Common Factor ([link])
For the following problems, factor the polynomials.
8a+4
- Answer
-
4(2a+1)
10x+10
3y^2+27y
- Answer
-
3y(y+9)
6a^2b^2+18a^2
21(x+5)+9
- Answer
-
3(7x+38)
14(2a+1)+35
ma^3−m
- Answer
-
m(a^3−1)
15y^3−24y+24
r^2(r+1)^3−3r(r+1)^2+r+1
- Answer
-
(r+1)[r^2(r+1)^2−3r(r+1)+1]
Pa+Pb+Pc
(10−3x)(2+x)+3(10−3x)(7+x)
- Answer
-
(10−3x)(23+4x)
Factoring by Grouping
For the following problems, use the grouping method to factor the polynomials. Some may not be factorable.
4ax+x+4ay+y
xy+4x−3y−12
- Answer
-
(x−3)(y+4)
2ab−8b−3ab−12a
a^2−7a+ab−7b
- Answer
-
(a+b)(a−7)
m^2+5m+nm+5n
r^2+rs−r−s
- Answer
-
(r−1)(r+s)
8a^2bc+20a^2bc+10a^3b^3c+25a^3b^3
a(a+6)−(a+6)+a(a−4)−(a−4)
- Answer
-
2(a+1)(a−1)
a(2x+7)−4(2x+7)+a(x−10)−4(x−10)
Factoring Two Special Products - Factoring Trinomials with Leading Coefficient Other Than 1
For the following problems, factor the polynomials, if possible.
m^2−36
- Answer
-
(m+6)(m−6)
r^2−81
a^2+8a+16
- Answer
-
(a+4)^2
c^2+10c+25
m^2+m+1
- Answer
-
not factorable
r^2−r−6
a^2+9a+20
- Answer
-
(a+5)(a+4)
s^2+9s+18
x^2+14x+40
- Answer
-
(x+10)(x+4)
a^2−12a+36
n^2−14n+49
- Answer
-
(n−7)^2
a^2+6a+5
a^2−9a+20
- Answer
-
(a−5)(a−4)
6x^2+5x+1
4a^2−9a−9
- Answer
-
(4a+3)(a−3)
4x^2+7x+3
42a^2+5a−2
- Answer
-
(6a−1)(7a+2)
30y^2+7y−15
56m^2+26m+6
- Answer
-
2(28m^2+13m+3)
27r^2−33r−4
4x^2+4xy−3y^2
- Answer
-
(2x+3y)(2x−y)
25a^2+25ab+6b^2
2x^2+6x−20
- Answer
-
2(x−2)(x+5)
−2y^2+4y+48
x^3+3x^2−4x
- Answer
-
x(x+4)(x−1)
3y^4−27y^3+24y^2
15a^2b^2−ab−2b
- Answer
-
b(15a^2b−a−2)
4x^3−16x^2+16x
18a^2 - 6a + \dfrac{1}{2}
- Answer
-
(6a-1)(3a-\dfrac{1}{2})
a^4+16a^2b+16b^2
4x^2−12xy+9y^2
- Answer
-
(2x−3y)^2
49b^4−84b^2+36
r^6s^8+6r^3s^4p^2q^6+9p^4q^{12}
- Answer
-
(r^3s^4+3p^2q^6)^2
a^4−2a^2b−15b^2
81a^8b^{12}c^{10}−25x^{20}y^{18}
- Answer
-
(9a^4b^6c^5+5x^{10}y^9)(9a^4b^6c^5−5x^{10}y^9)