Skip to main content
Mathematics LibreTexts

10.4: Solving Quadratic Equations Using the Method of Extraction of Roots

  • Page ID
    49404
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The Method Of Extraction Of Roots

    Extraction of Roots

    Quadratic equations of the form \(x^2 - K = 0\) can be solved by the method of extraction of roots by rewriting it in the form \(x^2 = K\).

    To solve \(x^2 = K\), we are required to find some number, \(x\), that when squared produces \(K\). This number, \(x\), must be a square root of \(K\). If \(K\) is greater than zero, we know that it prossesses two square roots, \(\sqrt{K}\) and \(-\sqrt{K}\). We also know that

    \((\sqrt{K})^2) = (\sqrt{K})(\sqrt{K}) = K\) and \((-\sqrt{K}) = (-\sqrt{K})(-\sqrt{K}) = K\)

    We now have two replacements for \(x\) that produce true statements when substitued into the equation. Thus, \(x = \sqrt{K}\) and \(x = -\sqrt{K}\) are both solutions to \(x^2 = K\). We use the notation \(x = \pm \sqrt{K}\) to denote both the principal and secondary square roots.

    The Nature of Solutions

    Solutions of \(x^2 = K\)

    For quadratic equations of the form \(x^2 = K\),

    1. If \(K\) is greater than or equal to zero, the solutions are \(\pm \sqrt{K}\).
    2. If \(K\) is negative, no real number solutions exist.
    3. If \(K\) is zero, the only solution is \(0\).

    Sample Set A

    Solve each of the following quadratic equations using the method of extraction of roots.

    Example \(\PageIndex{1}\)

    \(\begin{array}{flushleft}
    x^2 - 49 &= 0 & \text{ Rewrite }\\
    x^2 &= 49\\
    x &= \pm \sqrt{49}\\
    x &= \pm 7
    \end{array}\)

    Check:

    \(\begin{array}{flushleft}
    (7)^2 = 49 & \text{ Is this correct? } & (-7)^2 = 49 & \text{ Is this correct? }\\
    49 = 49 & \text{ Yes, this is correct. } & 49 = 49 & \text{ Yes, this is correct. }
    \end{array}\)

    Example \(\PageIndex{2}\)

    \(\begin{array}{flushleft}
    25a^2 &= 36\\
    a^2 &= \dfrac{36}{25}\\
    a &= \pm \sqrt{\frac{36}{25}}\\
    a &= \pm \dfrac{6}{5}
    \end{array}\)

    Check:

    \(\begin{array}{flushleft}
    25(\dfrac{6}{5})^2 &= 36 & \text{ Is this correct? } & 25(\dfrac{-6}{5})^2 &= 36 & \text{ Is this correct? }\\
    25(\dfrac{36}{25})^2 &= 36 & \text{ Is this correct? } & 25(\dfrac{36}{25}) &= 36 & \text{ Is this correct? }\\
    36 &= 36 & \text{Yes, this is correct. } & 36 &= 36 & \text{ Yes, this is correct. }
    \end{array}\)

    Example \(\PageIndex{3}\)

    \(\begin{array}{flushleft}
    4m^2 - 32 &= 0\\
    4m^2 &= 32\\
    m^2 &= \dfrac{32}{4}\\
    m^2 &= 8\\
    m &= \pm \sqrt{8}\\
    m &= \pm 2\sqrt{2}
    \end{array}\)

    Check:

    \(\begin{array}{flushleft}
    4(2\sqrt{2})^2 &= 32 & \text{ Is this correct? } & 4(-2\sqrt{2})^2 &= 32 & \text{ Is this correct? }\\
    4[2^2(\sqrt{2})^2] &= 32 & \text{ Is this correct? } & 4[(-2)^2(\sqrt{2})^2] &= 32 & \text{ Is this correct? }\\
    4[4 \cdot 2] &= 32 & \text{ Is this correct? } & 4[4 \cdot 2] &= 32 & \text{ Is this correct? }\\
    4 \cdot 8 &= 32 & \text{ Is this correct? } & 4 \cdot 8 &= 32 & \text{ Is this correct? }\\
    32 &= 32 & \text{ Yes, this is correct. } & 32 &=32 & \text{ Yes, this is correct. }
    \end{array}\)

    Example \(\PageIndex{4}\)

    Solve \(5x^2 - 15y^2z^7 = 0\) for \(x\).

    \(\begin{array}{flushleft}
    5x^2 &= 15y^2z^7 & \text{ Divide both sides by } 5\\
    x^2 &= 3y^2z^7\\
    x &= \pm \sqrt{3y^2z^7}\\
    x &= \pm yz^3\sqrt{3z}
    \end{array}\)

    Example \(\PageIndex{5}\)

    Calculator Problem:

    Solve \(14a^2 - 235 = 0\). Round to the nearest hundredth.

    \(\begin{array}{flushleft}
    14a^2 - 235 &= 0 & \text{ Rewrite }\\
    14a^2 &= 235 & \text{ Divide both sides by } 14\\
    a^2 &= \dfrac{235}{14}
    \end{array}\)

    Rounding to the nearest hundredth produces \(4.10\). We must be sure to insert the \(\pm\) symbol.

    \(a \approx \pm 4.10\).

    Example \(\PageIndex{6}\)

    \(\begin{array}{flushleft}
    k^2 &= -64\\
    k &= \pm \sqrt{-64}
    \end{array}\)

    The radicand is negative so no real number solutions exist

    Practice Set A

    Solve each of the following quadratic equations using the method of extraction of roots.

    Practice Problem \(\PageIndex{1}\)

    \(x^2 - 144 = 0\)

    Answer

    \(x = \pm 12\)

    Practice Problem \(\PageIndex{2}\)

    \(9y^2 - 121 = 0\)

    Answer

    \(y = \pm \dfrac{11}{3}\)

    Practice Problem \(\PageIndex{3}\)

    \(6a^2 = 108\)

    Answer

    \(a = \pm 3\sqrt{2}\)

    Practice Problem \(\PageIndex{4}\)

    Solve \(4n^2 = 24m^2p^8\) for \(n\).

    Answer

    \(n = \pm mp^4\sqrt{6}\)

    Practice Problem \(\PageIndex{5}\)

    Solve \(5p^2q^2 = 45p^2\) for \(q\)

    Answer

    \(q = \pm 3\)

    Practice Problem \(\PageIndex{6}\)

    Solve \(16m^2 - 2206 = 0\). Round to the nearest hundredth.

    Answer

    \(m = \pm 11.74\)

    Practice Problem \(\PageIndex{7}\)

    \(h^2 = -100\)

    Sample Set B

    Solve each of the following quadratic equations using the method of extraction of roots.

    Example \(\PageIndex{7}\)

    \(\begin{array}{flushleft}
    (x+2)^2 &= 81\\
    x + 2 &= \pm \sqrt{81}\\
    x + 2 &= \pm 9 & \text{ Subtract } 2 \text{ from both sides.}\\
    x &= -2 \pm 9\\
    x &= -2 + 9 & \text{and} & x&= -2 - 9\\
    x &= 7 & & x &= -11
    \end{array}\)

    Example \(\PageIndex{8}\)

    \(\begin{array}{flushleft}
    (a+3)^2 &= 5\\
    a + 3 &= \pm \sqrt{5} & \text{ Subtract } 3 \text{ from both sides }\\
    a &= -3 \pm \sqrt{5}
    \end{array}\)

    Practice Set B

    Solve each of the following quadratic equations using the method of extraction of roots.

    Practice Problem \(\PageIndex{8}\)

    \((a + 6)^2 = 64\)

    Answer

    \(a=2,−14\)

    Practice Problem \(\PageIndex{9}\)

    \((m - 4)^2 = 15\)

    Answer

    \(m = 4 \pm \sqrt{15}\)

    Practice Problem \(\PageIndex{10}\)

    \((y-7)^2 = 49\)

    Answer

    \(y=0, 14\)

    Practice Problem \(\PageIndex{11}\)

    \((k - 1)^2 = 12\)

    Answer

    \(k = 1 \pm 2 \sqrt{3}\)

    Practice Problem \(\PageIndex{12}\)

    \((x - 11)^2 = 0\)

    Answer

    \(x=11\)

    Exercises

    For the following problems, solve each of the quadratic equations using the method of extraction of roots.

    Exercise \(\PageIndex{1}\)

    \(x^2 = 36\)

    Answer

    \(x = \pm 6\)

    Exercise \(\PageIndex{2}\)

    \(x^2 = 49\)

    Exercise \(\PageIndex{3}\)

    \(a^2 = 9\)

    Answer

    \(a = \pm 3\)

    Exercise \(\PageIndex{4}\)

    \(a^2 = 4\)

    Exercise \(\PageIndex{5}\)

    \(b^2 = 1\)

    Answer

    \(b = \pm 1\)

    Exercise \(\PageIndex{6}\)

    \(a^2 = 1\)

    Exercise \(\PageIndex{7}\)

    \(x^2 = 25\)

    Answer

    \(x = \pm 5\)

    Exercise \(\PageIndex{8}\)

    \(x^2 = 81\)

    Exercise \(\PageIndex{9}\)

    \(a^2 = 5\)

    Answer

    \(a = \pm \sqrt{5}\)

    Exercise \(\PageIndex{10}\)

    \(a^2 = 10\)

    Exercise \(\PageIndex{11}\)

    \(b^2 = 12\)

    Answer

    \(b = \pm 2\sqrt{3}\)

    Exercise \(\PageIndex{12}\)

    \(b^2 = 6\)

    Exercise \(\PageIndex{13}\)

    \(y^2 = 3\)

    Answer

    \(y = \pm \sqrt{3}\)

    Exercise \(\PageIndex{14}\)

    \(y^2 = 7\)

    Exercise \(\PageIndex{15}\)

    \(a^2 - 8 = 0\)

    Answer

    \(a = \pm 2\sqrt{2}\)

    Exercise \(\PageIndex{16}\)

    \(a^2 - 3 = 0\)

    Exercise \(\PageIndex{17}\)

    \(a^2 - 5 = 0\)

    Answer

    \(a = \pm \sqrt{5}\)

    Exercise \(\PageIndex{18}\)

    \(y^2 - 1 = 0\)

    Exercise \(\PageIndex{19}\)

    \(x^2 - 10 = 0\)

    Answer

    \(x = \pm \sqrt{10}\)

    Exercise \(\PageIndex{20}\)

    \(x^2 - 11 = 0\)

    Exercise \(\PageIndex{21}\)

    \(3x^2 - 27 = 0\)

    Answer

    \(x = \pm 3\)

    Exercise \(\PageIndex{22}\)

    \(5b^2 - 5 = 0\)

    Exercise \(\PageIndex{23}\)

    \(2x^2 = 50\)

    Answer

    \(x = \pm 5\)

    Exercise \(\PageIndex{24}\)

    \(4a^2 = 40\)

    Exercise \(\PageIndex{25}\)

    \(2x^2 = 24\)

    Answer

    \(x = \pm 2\sqrt{3}\)

    For the following problems, solve for the indicated variable.

    Exercise \(\PageIndex{26}\)

    \(x^2 = 4a^2\), for \(x\)

    Exercise \(\PageIndex{27}\)

    \(x^2 = 9b^2\), for \(x\)

    Answer

    \(x = \pm 3b\)

    Exercise \(\PageIndex{28}\)

    \(a^2 = 25c^2\), for \(a\)

    Exercise \(\PageIndex{29}\)

    \(k^2 = m^2n^2\), for \(k\).

    Answer

    \(k = \pm mn\)

    Exercise \(\PageIndex{30}\)

    \(k^2 = p^2q^2r^2\), for \(k\)

    Exercise \(\PageIndex{31}\)

    \(2y^2 = 2a^2n^2\), for \(y\)

    Answer

    \(y = \pm an\)

    Exercise \(\PageIndex{32}\)

    \(9y^2 = 27x^2z^4\), for \(y\).

    Exercise \(\PageIndex{33}\)

    \(x^2 - z^2 = 0\), for \(x\)

    Answer

    \(x = \pm z\)

    Exercise \(\PageIndex{34}\)

    \(x^2 - z^2 = 0\), for \(z\)

    Exercise \(\PageIndex{35}\)

    \(5a^2 - 10b^2 = 0\), for \(a\)

    Answer

    \(a = b\sqrt{2}, -b\sqrt{2}\)

    For the following problems, solve each of the quadratic equations using the method of extraction of roots.

    Exercise \(\PageIndex{36}\)

    \((x-1)^2 = 4\)

    Exercise \(\PageIndex{37}\)

    \((x-2)^2 = 9\)

    Answer

    \(x=5,−1\)

    Exercise \(\PageIndex{38}\)

    \((x-3)^2 = 25\)

    Exercise \(\PageIndex{39}\)

    \((a-5)^2 = 36\)

    Answer

    \(x=11,−1\)

    Exercise \(\PageIndex{40}\)

    \((a + 3)^2 = 49\)

    Exercise \(\PageIndex{41}\)

    \((a + 9)^2 = 1\)

    Answer

    \(a=−8 ,−10\)

    Exercise \(\PageIndex{42}\)

    \((a - 6)^2 = 3\)

    Exercise \(\PageIndex{43}\)

    \((x + 4)^2 = 5\)

    Answer

    \(a = -4 \pm \sqrt{5}\)

    Exercise \(\PageIndex{44}\)

    \((b + 6)^2 = 7\)

    Exercise \(\PageIndex{45}\)

    \((x + 1)^2 = a\), for \(x\).

    Answer

    \(x = -1 \pm \sqrt{a}\)

    Exercise \(\PageIndex{46}\)

    \((y + 5)^2 = b\), for \(y\)

    Exercise \(\PageIndex{47}\)

    \((y + 2)^2 = a^2\), for \(y\)

    Answer

    \(y = -2 \pm a\)

    Exercise \(\PageIndex{48}\)

    \((x + 10)^2 = c^2\), for \(x\)

    Exercise \(\PageIndex{49}\)

    \((x - a)^2 = b^2\), for \(x\)

    Answer

    \(x = a \pm b\)

    Exercise \(\PageIndex{50}\)

    \((x + c)^2 = a^2\), for \(x\)

    Calculator Problems

    For the following problems, round each result to the nearest hundredth.

    Exercise \(\PageIndex{51}\)

    \(8a^2 - 168 = 0\)

    Answer

    \(a = \pm 4.58\)

    Exercise \(\PageIndex{52}\)

    \(6m^2 - 5 = 0\)

    Exercise \(\PageIndex{53}\)

    \(0.03y^2 = 1.6\)

    Answer

    \(y = \pm 7.30\)

    Exercise \(\PageIndex{54}\)

    \(0.048x^2 = 2.01\)

    Exercise \(\PageIndex{55}\)

    \(1.001x^2 - 0.999 = 0\)

    Answer

    \(x = \pm 1.00\)

    Exercises For Review

    Exercise \(\PageIndex{56}\)

    Graph the linear inequality \(3(x + 2) < 2(3x + 4)\)

    A horizontal line with arrows on both ends.

    Exercise \(\PageIndex{57}\)

    Solve the fractional equation: \(\dfrac{x-1}{x + 4} = \dfrac{x + 3}{x - 1}\)

    Answer

    \(x = \dfrac{-11}{9}\)

    Exercise \(\PageIndex{58}\)

    Find the product: \(\sqrt{32x^3y^5} \sqrt{2x^3y^3}\)

    Exercise \(\PageIndex{59}\)

    Solve \(x^2 - 4x = 0\)

    Answer

    \(x = 0, 4\)

    Exercise \(\PageIndex{60}\)

    Solve \(y^2 - 8y = -12\)


    This page titled 10.4: Solving Quadratic Equations Using the Method of Extraction of Roots is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .