6.E: Review Exercises and Sample Exam
( \newcommand{\kernel}{\mathrm{null}\,}\)
Review Exercises
Determine the missing factor.
- 12x^{3}−24x^{2}+4x=4x( ? )
- 10y^{4}−35y^{3}−5y^{2}=5y^{2}( ? )
- −18a^{5}+9a^{4}−27a^{3}=−9a^{3}( ? )
- −21x^{2}y+7xy^{2}−49xy=−7xy( ? )
- Answer
-
1. (3x^{2}−6x+1)
3. (2a^{2}−a+3)
Factor out the GCF.
- 22x^{2}+11x
- 15y^{4}−5y^{3}
- 18a^{3}−12a^{2}+30a
- 12a^{5}+20a^{3}−4a
- 9x^{3}y^{2}−18x^{2}y^{2}+27xy^{2}
- 16a^{5}b^{5}c−8a^{3}b^{6}+24a^{3}b^{2}c
- Answer
-
1. 11x(2x+1)
3. 6a(3a^{2}−2a+5)
5. 9xy2(x^{2}−2x+3)
Factor by grouping.
- x^{2}+2x−5x−10
- 2x^{2}−2x−3x+3
- x^{3}+5x^{2}−3x−15
- x^{3}−6x^{2}+x−6
- x^{3}−x^{2}y−2x+2y
- a^{2}b^{2}−2a^{3}+6ab−3b^{3}
- Answer
-
1. (x+2)(x−5)
3. (x+5)(x^{2}−3)
5. (x−y)(x^{2}−2)
Are the following factored correctly? Check by multiplying.
- x^{2}+5x+6=(x+6)(x−1)
- x^{2}+3x−10=(x+5)(x−2)
- x^{2}+6x+9=(x+3)^{2}
- x^{2}−6x−9=(x−3)(x+3)
- Answer
-
1. No
3. Yes
Factor.
- x^{2}−13x−14
- x^{2}+13x+12
- y^{2}+10y+25
- y^{2}−20y+100
- a^{2}−8a−48
- b^{2}−18b+45
- x^{2}+2x+24
- x^{2}−10x−16
- a^{2}+ab−2b^{2}
- a^{2}b^{2}+5ab−50
- Answer
-
1. (x−14)(x+1)
3. (y+5)^{2}
5. (a−12)(a+4)
7. Prime
9. (a−b)(a+2b)
Factor.
- 5x^{2}−27x−18
- 3x^{2}−14x+8
- 4x^{2}−28x+49
- 9x^{2}+48x+64
- 6x^{2}−29x−9
- 8x^{2}+6x+9
- 60x^{2}−65x+15
- 16x^{2}−40x+16
- 6x^{3}−10x^{2}y+4xy^{2}
- 10x^{3}y−82x^{2}y^{2}+16xy^{3}
- −y^{2}+9y+36
- −a^{2}−7a+98
- 16+142x−18x^{2}
- 45−132x−60x^{2}
- Answer
-
1. (5x+3)(x−6)
3. (2x−7)^{2}
5. Prime
7. 5(3x−1)(4x−3)
9. 2x(3x−2y)(x−y)
11. −1(y−12)(y+3)
13. −2(9x+1)(x−8)
Factor completely.
- x^{2}−81
- 25x^{2}−36
- 4x^{2}−49
- 81x^{2}−1
- x^{2}−64y^{2}
- 100x^{2}y^{2}−1
- 16x^{4}−y^{4}
- x^{4}−81y^{4}
- 8x^{3}−125
- 27+y^{3}
- 54x^{4}y−2xy^{4}
- 3x^{4}y^{2}+24xy^{5}
- 64x^{6}−y^{6}
- x^{6}+1
- Answer
-
1. (x+9)(x−9)
3. (2x+7)(2x−7)
5. (x+8y)(x−8y)
7. (4x^{2}+y^{2})(2x+y)(2x−y)
9. (2x−5)(4x^{2}+10x+25)
11. 2xy(3x−y)(9x^{2}+3xy+y^{2})
13. (2x+y)(4x^{2}−2xy+y^{2})(2x−y)(4x^{2}+2xy+y^{2})
Factor completely.
- 8x^{3}−4x^{2}+20x
- 50a^{4}b^{4}c+5a^{3}b^{5}c^{2}
- x^{3}−12x^{2}−x+12
- a^{3}−2a^{2}−3ab+6b
- −y^{2}−15y+16
- x^{2}−18x+72
- 144x^{2}−25
- 3x^{4}−48
- 20x^{2}−41x−9
- 24x^{2}+14x−20
- a^{4}b−343ab^{4}
- 32x^{7}y^{2}+4xy^{8}
- Answer
-
1. 4x(2x^{2}−x+5)
3. (x−12)(x+1)(x−1)
5. −1(y+16)(y−1)
7. (12x+5)(12x−5)
9. (4x−9)(5x+1)
11. ab(a−7b)(a^{2}+7ab+49b^{2})
Solve.
- (x−9)(x+10)=0
- −3x(x+8)=0
- 6(x+1)(x−1)=0
- (x−12)(x+4)(2x−1)=0
- x^{2}+5x−50=0
- 3x^{2}−13x+4=0
- 3x^{2}−12=0
- 16x^{2}−9=0
- (x−2)(x+6)=20
- 2(x−2)(x+3)=7x−9
- 52x^{2}−203x=0
- 23x^{2}−512x+124=0
- Answer
-
1. 9, −10
3. −1, 1
5. −10, 5
7. ±2
9. −8, 4
11. 0, \frac{8}{3}
Find a quadratic equation with integer coefficients, given the following solutions.
- −7, 6
- 0, −10
- −\frac{1}{9}, \frac{1}{2}
- ± \frac{3}{2}
- Answer
-
1. x^{2}+x−42=0
3. 18x^{2}−7x−1=0
Set up an algebraic equation and then solve the following.
- An integer is 4 less than twice another. If the product of the two integers is 96, then find the integers.
- The sum of the squares of two consecutive positive even integers is 52. Find the integers.
- A 20-foot ladder leaning against a wall reaches a height that is 4 feet more than the distance from the wall to the base of the ladder. How high does the ladder reach?
- The height of an object dropped from the top of a 196-foot building is given by h(t)=−16t^{2}+196, where t represents the number of seconds after the object has been released. How long will it take the object to hit the ground?
- The length of a rectangle is 1 centimeter less than three times the width. If the area is 70 square centimeters, then find the dimensions of the rectangle.
- The base of a triangle is 4 centimeters more than twice the height. If the area of the triangle is 80 square centimeters, then find the measure of the base.
- Answer
-
1. {8, 12} or {−6, −16}
3. 16 feet
5. Length: 14 centimeters; width: 5 centimeters
Sample Exam
- Determine the GCF of the terms 25a^{2}b^{2}c, 50ab^{4}, and 35a^{3}b^{3}c^{2}.
- Determine the missing factor: 24x^{2}y^{3}−16x^{3}y^{2}+8x^{2}y=8x^{2}y( ? ).
- Answer
-
1. 5ab^{2}
Factor.
- 12x^{5}−15x^{4}+3x^{2}
- x^{3}−4x^{2}−2x+8
- x^{2}−7x+12
- 9x^{2}−12x+4
- x^{2}−81
- x^{3}+27y^{3}
- Answer
-
1. 3x^{2}(4x^{3}−5x^{2}+1)
3. (x−4)(x−3)
5. (x+9)(x−9)
Factor completely.
- x^{3}+2x^{2}−4x−8
- x^{4}−1
- −6x^{3}+20x^{2}−6x
- x^{6}−1
- Answer
-
1. (x+2)^{2}(x−2)
3. −2x(3x−1)(x−3)
Solve.
- (2x+1)(x−7)=0
- 3x(4x−3)(x+1)=0
- x^{2}−64=0
- x^{2}+4x−12=0
- 23x^{2}+89x−16=0
- (x−5)(x−3)=−1
- 3x(x+3)=14x+2
- (3x+1)(3x+2)=9x+3
- Answer
-
1. −\frac{1}{2}, 7
3. ±8
5. −\frac{3}{2}, \frac{1}{6}
7. −\frac{1}{3}, 2
For each problem, set up an algebraic equation and then solve.
- An integer is 4 less than twice another. If the product of the two integers is 70, then find the integers.
- The sum of the squares of two consecutive positive odd integers is 130. Find the integers.
- The length of a rectangle is 4 feet more than twice its width. If the area is 160 square feet, then find the dimensions of the rectangle.
- The height of a triangle is 6 centimeters less than four times the length of its base. If the area measures 27 square centimeters, then what is the height of the triangle?
- The height of a projectile launched upward at a speed of 64 feet/second from a height of 36 feet is given by the function h(t)=−16t^{2}+64t+36. How long will it take the projectile to hit the ground?
- Answer
-
1. {7, 10} or {−14, −5}
3. Width: 8 feet; length: 20 feet
5. 4\frac{1}{2} sec