# 1.9E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Practice Makes Perfect

Simplify Expressions with Square Roots

In the following exercises, simplify.

659. $$\sqrt{36}$$

660. $$\sqrt{4}$$

661. $$\sqrt{64}$$

662. $$\sqrt{169}$$

663. $$\sqrt{9}$$

664. $$\sqrt{16}$$

665. $$\sqrt{100}$$

666. $$\sqrt{144}$$

667. $$\sqrt{−4}$$

668. $$\sqrt{−100}$$

669. $$\sqrt{−1}$$

670. $$\sqrt{−121}$$

Identify Integers, Rational Numbers, Irrational Numbers, and Real Numbers

In the following exercises, write as the ratio of two integers.

671.

ⓐ 5 ⓑ 3.19

672.

ⓐ 8 ⓑ 1.61

673.

ⓐ −12−12 ⓑ 9.279

674.

ⓐ −16−16 ⓑ 4.399

In the following exercises, list the ⓐ rational numbers, ⓑ irrational numbers

675.

0.75,0.223–,1.391740.75,0.223–,1.39174

676.

0.36,0.94729…,2.528–0.36,0.94729…,2.528–

677.

0.45–,1.919293…,3.590.45–,1.919293…,3.59

678.

0.13–,0.42982…,1.8750.13–,0.42982…,1.875

In the following exercises, identify whether each number is rational or irrational.

679.

ⓐ 25‾‾‾√25 ⓑ 30‾‾‾√30

680.

ⓐ 44‾‾‾√44 ⓑ 49‾‾‾√49

681.

ⓐ 164‾‾‾‾√164 ⓑ 169‾‾‾‾√169

682.

ⓐ 225‾‾‾‾√225 ⓑ 216‾‾‾‾√216

In the following exercises, identify whether each number is a real number or not a real number.

683.

ⓐ −81‾‾‾√−81 ⓑ −121‾‾‾‾‾√−121

684.

ⓐ −64‾‾‾√−64 ⓑ −9‾‾‾√−9

685.

ⓐ −36‾‾‾‾√−36 ⓑ −144‾‾‾‾√−144

686.

ⓐ −49‾‾‾‾√−49 ⓑ −144‾‾‾‾√−144

In the following exercises, list the ⓐ whole numbers, ⓑ integers, ⓒ rational numbers, ⓓ irrational numbers, ⓔ real numbers for each set of numbers.

687.

−8,0,1.95286…,125,36‾‾‾√,9−8,0,1.95286…,125,36,9

688.

−9,−349,−9‾√,0.409–,116,7−9,−349,−9,0.409–,116,7

689.

−100‾‾‾‾√,−7,−83,−1,0.77,314−100,−7,−83,−1,0.77,314

690.

−6,−52,0,0.714285———,215,14‾‾‾√−6,−52,0,0.714285———,215,14

Locate Fractions on the Number Line

In the following exercises, locate the numbers on a number line.

691.

34,85,10334,85,103

692.

14,95,11314,95,113

693.

310,72,116,4310,72,116,4

694.

710,52,138,3710,52,138,3

695.

25,−2525,−25

696.

34,−3434,−34

697.

34,−34,123,−123,52,−5234,−34,123,−123,52,−52

698.

15,−25,134,−134,83,−8315,−25,134,−134,83,−83

In the following exercises, order each of the pairs of numbers, using < or >.

699.

−1___−14−1___−14

700.

−1___−13−1___−13

701.

−212___−3−212___−3

702.

−134___−2−134___−2

703.

−512___−712−512___−712

704.

−910___−310−910___−310

705.

−3___−135−3___−135

706.

−4___−236−4___−236

Locate Decimals on the Number Line In the following exercises, locate the number on the number line.

707.

0.8

708.

−0.9−0.9

709.

−1.6−1.6

710.

3.1

In the following exercises, order each pair of numbers, using < or >.

711.

0.37___0.630.37___0.63

712.

0.86___0.690.86___0.69

713.

0.91___0.9010.91___0.901

714.

0.415___0.410.415___0.41

715.

−0.5___−0.3−0.5___−0.3

716.

−0.1___−0.4−0.1___−0.4

717.

−0.62___−0.619−0.62___−0.619

718.

−7.31___−7.3−7.31___−7.3

### Everyday Math

719.

Field trip All the 5th graders at Lincoln Elementary School will go on a field trip to the science museum. Counting all the children, teachers, and chaperones, there will be 147 people. Each bus holds 44 people.

ⓐ How many busses will be needed?
ⓑ Why must the answer be a whole number?
ⓒ Why shouldn’t you round the answer the usual way, by choosing the whole number closest to the exact answer?

720.

Child care Serena wants to open a licensed child care center. Her state requires there be no more than 12 children for each teacher. She would like her child care center to serve 40 children.

ⓐ How many teachers will be needed?
ⓑ Why must the answer be a whole number?
ⓒ Why shouldn’t you round the answer the usual way, by choosing the whole number closest to the exact answer?

### Writing Exercises

721.

In your own words, explain the difference between a rational number and an irrational number.

722.

Explain how the sets of numbers (counting, whole, integer, rational, irrationals, reals) are related to each other.

### Self Check

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objective of this section.

ⓑ On a scale of 1−10,1−10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?

This page titled 1.9E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.