# 2.2E: Exercises

• • OpenStax
• OpenStax
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## Practice Makes Perfect

Solve Equations Using the Division and Multiplication Properties of Equality

In the following exercises, solve each equation using the Division and Multiplication Properties of Equality and check the solution.

##### Exercise $$\PageIndex{1}$$

$$8x=56$$

$$x=7$$

##### Exercise $$\PageIndex{2}$$

$$7 p=63$$

##### Exercise $$\PageIndex{3}$$

$$-5 c=55$$

$$c=-11$$

##### Exercise $$\PageIndex{4}$$

$$-9 x=-27$$

##### Exercise $$\PageIndex{5}$$

$$-809=15 y$$

$$y = -\frac{809}{15}$$

##### Exercise $$\PageIndex{6}$$

$$-731=19 y$$

##### Exercise $$\PageIndex{7}$$

$$-37 p=-541$$

$$p=-\frac{541}{37}$$

##### Exercise $$\PageIndex{8}$$

$$-19 m=-586$$

##### Exercise $$\PageIndex{9}$$

$$0.25 z=3.25$$

z= 13

##### Exercise $$\PageIndex{10}$$

$$0.75 a=11.25$$

##### Exercise $$\PageIndex{11}$$

$$-13x=0$$

$$x=0$$

##### Exercise $$\PageIndex{12}$$

$$24x=0$$

##### Exercise $$\PageIndex{13}$$

$$\frac{x}{4} = 35$$

$$x=140$$

##### Exercise $$\PageIndex{14}$$

$$\frac{z}{2}=54$$

##### Exercise $$\PageIndex{15}$$

$$-20=\frac{q}{-5}$$

$$q=100$$

##### Exercise $$\PageIndex{16}$$

$$\frac{c}{-3}=-12$$

##### Exercise $$\PageIndex{17}$$

$$\frac{y}{9}=-16$$

$$y=-144$$

##### Exercise $$\PageIndex{18}$$

$$\frac{q}{6}=-38$$

##### Exercise $$\PageIndex{19}$$

$$\frac{m}{-12}=45$$

$$m=-540$$

##### Exercise $$\PageIndex{20}$$

$$-24=\frac{p}{-20}$$

##### Exercise $$\PageIndex{21}$$

$$-y=6$$

$$y=-6$$

##### Exercise $$\PageIndex{22}$$

$$-u=15$$

##### Exercise $$\PageIndex{23}$$

$$-v=-72$$

$$v=72$$

##### Exercise $$\PageIndex{24}$$

$$-x=-39$$

##### Exercise $$\PageIndex{25}$$

$$\frac{2}{3} y=48$$

$$y=72$$

##### Exercise $$\PageIndex{26}$$

$$\frac{3}{5} r=75$$

##### Exercise $$\PageIndex{27}$$

$$-\frac{5}{8} w=40$$

$$w=-64$$

##### Exercise $$\PageIndex{28}$$

$$24=-\frac{3}{4} x$$

##### Exercise $$\PageIndex{29}$$

$$-\frac{2}{5}=\frac{1}{10} a$$

$$a=-4$$

##### Exercise $$\PageIndex{30}$$

$$-\frac{1}{3} q=-\frac{5}{6}$$

##### Exercise $$\PageIndex{31}$$

$$-\frac{7}{10} x=-\frac{14}{3}$$

$$x=\frac{20}{3}$$

##### Exercise $$\PageIndex{32}$$

$$\frac{3}{8} y=-\frac{1}{4}$$

##### Exercise $$\PageIndex{33}$$

$$\frac{7}{12}=-\frac{3}{4} p$$

$$p=-\frac{7}{9}$$

##### Exercise $$\PageIndex{34}$$

$$\frac{11}{18}=-\frac{5}{6} q$$

##### Exercise $$\PageIndex{35}$$

$$-\frac{5}{18}=-\frac{10}{9} u$$

$$u=\frac{1}{4}$$

##### Exercise $$\PageIndex{36}$$

$$-\frac{7}{20}=-\frac{7}{4} v$$

Solve Equations That Require Simplification

In the following exercises, solve each equation requiring simplification.

##### Exercise $$\PageIndex{37}$$

$$100-16=4 p-10 p-p$$

$$p=-12$$

##### Exercise $$\PageIndex{38}$$

$$-18-7=5 t-9 t-6 t$$

##### Exercise $$\PageIndex{39}$$

$$\frac{7}{8} n-\frac{3}{4} n=9+2$$

$$n=88$$

##### Exercise $$\PageIndex{40}$$

$$\frac{5}{12} q+\frac{1}{2} q=25-3$$

##### Exercise $$\PageIndex{41}$$

$$0.25 d+0.10 d=6-0.75$$

d=15

##### Exercise $$\PageIndex{42}$$

$$0.05 p-0.01 p=2+0.24$$

##### Exercise $$\PageIndex{43}$$

$$-10(q-4)-57=93$$

$$q=-11$$

##### Exercise $$\PageIndex{44}$$

$$-12(d-5)-29=43$$

##### Exercise $$\PageIndex{45}$$

$$-10(x+4)-19=85$$

$$x=-\frac{72}{5}$$

##### Exercise $$\PageIndex{46}$$

$$-15(z+9)-11=75$$

Mixed Practice

In the following exercises, solve each equation.

##### Exercise $$\PageIndex{47}$$

$$\frac{9}{10} x=90$$

$$x=100$$

##### Exercise $$\PageIndex{48}$$

$$\frac{5}{12} y=60$$

##### Exercise $$\PageIndex{49}$$

$$y+46=55$$

$$y=9$$

##### Exercise $$\PageIndex{50}$$

$$x+33=41$$

##### Exercise $$\PageIndex{51}$$

$$\frac{w}{-2}=99$$

$$w=-198$$

##### Exercise $$\PageIndex{52}$$

$$\frac{s}{-3}=-60$$

##### Exercise $$\PageIndex{53}$$

$$27=6 a$$

$$a=\frac{9}{2}$$

##### Exercise $$\PageIndex{54}$$

$$-a=7$$

##### Exercise $$\PageIndex{55}$$

$$-x=2$$

$$x=-2$$

##### Exercise $$\PageIndex{56}$$

$$z-16=-59$$

##### Exercise $$\PageIndex{57}$$

$$m-41=-14$$

$$m=27$$

##### Exercise $$\PageIndex{58}$$

$$0.04 r=52.60$$

##### Exercise $$\PageIndex{59}$$

$$63.90=0.03 p$$

$$p=2130$$

##### Exercise $$\PageIndex{60}$$

$$-15 x=-120$$

##### Exercise $$\PageIndex{61}$$

$$84=-12 z$$

$$y=-7$$

##### Exercise $$\PageIndex{62}$$

$$19.36=x-0.2 x$$

##### Exercise $$\PageIndex{63}$$

$$c-0.3 c=35.70$$

$$c=51$$

##### Exercise $$\PageIndex{64}$$

$$-y=-9$$

##### Exercise $$\PageIndex{65}$$

$$-x=-8$$

$$x=8$$

Translate to an Equation and Solve

In the following exercises, translate to an equation and then solve.

##### Exercise $$\PageIndex{66}$$

187 is the product of $$-17$$ and $$m$$

##### Exercise $$\PageIndex{67}$$

133 is the product of $$-19$$ and $$n$$

$$133=-19 n ; n=-7$$

##### Exercise $$\PageIndex{68}$$

$$-184$$ is the product of 23 and $$p$$

##### Exercise $$\PageIndex{69}$$

$$-152$$ is the product of 8 and $$q$$

$$-152=8 q ; q=-19$$

##### Exercise $$\PageIndex{70}$$

$$u$$ divided by 7 is equal to $$-49$$

##### Exercise $$\PageIndex{71}$$

$$r$$ divided by 12 is equal to $$-48$$

$$\frac{r}{12}=-48 ; r=-576$$

##### Exercise $$\PageIndex{72}$$

$$h$$ divided by $$-13$$ is equal to $$-65$$

##### Exercise $$\PageIndex{73}$$

$$j$$ divided by $$-20$$ is equal to $$-80$$

$$\frac{j}{-20}=-80 ; j=1,600$$

##### Exercise $$\PageIndex{74}$$

The quotient $$c$$ and $$-19$$ is $$38 .$$

##### Exercise $$\PageIndex{75}$$

The quotient of $$b$$ and $$-6$$ is 18

$$\frac{b}{-6}=18 ; b=-108$$

##### Exercise $$\PageIndex{76}$$

The quotient of $$h$$ and 26 is $$-52$$

##### Exercise $$\PageIndex{77}$$

The quotient $$k$$ and 22 is $$-66$$

$$\frac{k}{22}=-66 ; k=-1,452$$

##### Exercise $$\PageIndex{78}$$

Five-sixths of $$y$$ is 15

##### Exercise $$\PageIndex{79}$$

Three-tenths of $$x$$ is 15

$$\frac{3}{10} x=15 ; x=50$$

##### Exercise $$\PageIndex{80}$$

Four-thirds of $$w$$ is 36

##### Exercise $$\PageIndex{81}$$

Five-halves of $$v$$ is 50

$$\frac{5}{2} v=50 ; v=20$$

##### Exercise $$\PageIndex{82}$$

The sum of nine-tenths and $$g$$ is two-thirds.

##### Exercise $$\PageIndex{83}$$

The sum of two-fifths and $$f$$ is one-half.

$$\frac{2}{5}+f=\frac{1}{2} ; f=\frac{1}{10}$$

##### Exercise $$\PageIndex{84}$$

The difference of $$p$$ and one-sixth is two-thirds.

##### Exercise $$\PageIndex{85}$$

The difference of $$q$$ and one-eighth is three-fourths.

$$q-\frac{1}{8}=\frac{3}{4} ; q=\frac{7}{8}$$

Translate and Solve Applications

In the following exercises, translate into an equation and solve.

##### Exercise $$\PageIndex{86}$$

Kindergarten Connie’s kindergarten class has 24 children. She wants them to get into 4 equal groups. How many children will she put in each group?

##### Exercise $$\PageIndex{87}$$

Balloons Ramona bought 18 balloons for a party. She wants to make 3 equal bunches. How many balloons did she use in each bunch?

6 balloons

## Everyday Math

##### Exercise $$\PageIndex{93}$$

Commissions Every week Perry gets paid $$\150$$ plus 12% of his total sales amount. Solve the equation
$$840=150+0.12(a-1250)$$ for $$a$$ to find the total amount Perry must sell in order to be paid $$\ 840$$ one week.

##### Exercise $$\PageIndex{94}$$

Stamps Travis bought \$9.45 worth of 49-cent stamps and 21-cent stamps. The number of 21-cent stamps was 5 less than the number of 49-cent stamps. Solve the equation 0.49s+0.21(s−5)=9.45 for s, to find the number of 49-cent stamps Travis bought.

15 49-cent stamps

## Writing Exercises

##### Exercise $$\PageIndex{95}$$

Frida started to solve the equation −3x=36 by adding 3 to both sides. Explain why Frida’s method will not solve the equation.

##### Exercise $$\PageIndex{96}$$

Emiliano thinks $$x=40$$ is the solution to the equation $$\frac{1}{2} x=80 .$$ Explain why he is wrong. 