7.1E: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Practice Makes Perfect
Find the Greatest Common Factor of Two or More Expressions
In the following exercises, find the greatest common factor.
8,18
- Answer
-
2
24,40
72,162
- Answer
-
18
150,275
10a,50
- Answer
-
10
5b,30
3x, 10x2
- Answer
-
x
21b2, 14b
8w2, 24w3
- Answer
-
8w2
30x2, 18x3
10p3q, 12pq2
- Answer
-
2pq
8a2b3, 10ab2
12m2n3, 30m5n3
- Answer
-
6m2n3
28x2y4, 42x4y4
10a3, 12a2, 14a
- Answer
-
2a
20y3, 28y2, 40y
35x3, 10x4, 5x5
- Answer
-
5x3
27p2, 45p3, 9p4
Factor the Greatest Common Factor from a Polynomial
In the following exercises, factor the greatest common factor from each polynomial.
4x+20
- Answer
-
4(x+5)
8y+16
6m+9
- Answer
-
3(2m+3)
14p+35
9q+9
- Answer
-
9(q+1)
7r+7
8m−8
- Answer
-
8(m−1)
4n−4
9n−63
- Answer
-
9(n−7)
45b−18
3x2+6x−9
- Answer
-
3(x2+2x−3)
4y2+8y−4
8p2+4p+2
- Answer
-
2(4p2+2p+1)
10q2+14q+20
8y3+16y2
- Answer
-
8y2(y+2)
12x3−10x
5x3−15x2+20x
- Answer
-
5x(x2−3x+4)
8m2−40m+16
12xy2+18x2y2−30y3
- Answer
-
6y2(2x+3x2−5y)
21pq2+35p2q2−28q3
−2x−4
- Answer
-
−2(x+2)
−3b+12
5x(x+1)+3(x+1)
- Answer
-
(x+1)(5x+3)
2x(x−1)+9(x−1)
3b(b−2)−13(b−2)
- Answer
-
(b−2)(3b−13)
6m(m−5)−7(m−5)
In the following exercises, factor by grouping.
xy+2y+3x+6
- Answer
-
(y+3)(x+2)
mn+4n+6m+24
uv−9u+2v−18
- Answer
-
(u+2)(v−9)
pq−10p+8q−80
b2+5b−4b−20
- Answer
-
(b−4)(b+5)
m2+6m−12m−72
p2+4p−9p−36
- Answer
-
(p−9)(p+4)
x2+5x−3x−15
In the following exercises, factor.
−20x−10
- Answer
-
−10(2x+1)
5x3−x2+x
3x3−7x2+6x−14
- Answer
-
(x2+2)(3x−7)
x3+x2−x−1
x2+xy+5x+5y
- Answer
-
(x+y)(x+5)
5x3−3x2−5x−3
Everyday Math
Area of a rectangle The area of a rectangle with length 6 less than the width is given by the expression w2−6w, where w= width. Factor the greatest common factor from the polynomial.
- Answer
-
w(w−6)
Height of a baseball The height of a baseball t seconds after it is hit is given by the expression −16t2+80t+4
Writing Exercises
The greatest common factor of 36 and 60 is 12. Explain what this means.
- Answer
-
Answers will vary.
What is the GCF of y4, y5, and y10? Write a general rule that tells you how to find the GCF of ya, yb, and yc.
Self Check
a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

b. If most of your checks were:
…confidently. Congratulations! You have achieved your goals in this section! Reflect on the study skills you used so that you can continue to use them. What did you do to become confident of your ability to do these things? Be specific!
…with some help. This must be addressed quickly as topics you do not master become potholes in your road to success. Math is sequential—every topic builds upon previous work. It is important to make sure you have a strong foundation before you move on. Who can you ask for help? Your fellow classmates and instructor are good resources. Is there a place on campus where math tutors are available? Can your study skills be improved?
…no - I don’t get it! This is critical and you must not ignore it. You need to get help immediately or you will quickly be overwhelmed. See your instructor as soon as possible to discuss your situation. Together you can come up with a plan to get you the help you need.