Skip to main content
Mathematics LibreTexts

Chapter 9 Review Exercises

  • Page ID
    30583
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Chapter 9 Review Exercises

    Simplify and Use Square Roots

    Simplify Expressions with Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{1}\)

    \(\sqrt{64}\)

    Exercise \(\PageIndex{2}\)

    \(\sqrt{144}\)

    Answer

    12

    Exercise \(\PageIndex{3}\)

    \(−\sqrt{25}\)

    Exercise \(\PageIndex{4}\)

    \(−\sqrt{81}\)

    Answer

    −9

    Exercise \(\PageIndex{5}\)

    \(\sqrt{−9}\)

    Exercise \(\PageIndex{6}\)

    \(\sqrt{−36}\)

    Answer

    not a real number

    Exercise \(\PageIndex{7}\)

    \(\sqrt{64}+\sqrt{225}\)

    Exercise \(\PageIndex{8}\)

    \(\sqrt{64+225}\)

    Answer

    17

    Estimate Square Roots

    In the following exercises, estimate each square root between two consecutive whole numbers.

    Exercise \(\PageIndex{9}\)

    \(\sqrt{28}\)

    Exercise \(\PageIndex{10}\)

    \(\sqrt{155}\)

    Answer

    \(12<\sqrt{155}<13\)

    Approximate Square Roots

    In the following exercises, approximate each square root and round to two decimal places.

    Exercise \(\PageIndex{11}\)

    \(\sqrt{15}\)

    Example \(\PageIndex{12}\)

    \(\sqrt{57}\)

    Answer

    7.55

    Simplify Variable Expressions with Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{13}\)

    \(\sqrt{q^2}\)

    Exercise \(\PageIndex{14}\)

    \(\sqrt{64b^2}\)

    Answer

    8b

    Exercis\e \(\PageIndex{15}\)

    \(−\sqrt{121a^2}\)

    Exercise \(\PageIndex{16}\)

    \(\sqrt{225m^{2}n^{2}}\)

    Answer

    15mn

    Exercise \(\PageIndex{17}\)

    \(−\sqrt{100q^2}\)

    Exercise \(\PageIndex{18}\)

    \(\sqrt{49y^2}\)

    Answer

    7y

    Exercise \(\PageIndex{19}\)

    \(\sqrt{4a^{2}b^{2}}\)

    Exercise \(\PageIndex{20}\)

    \(\sqrt{121c^{2}d^{2}}\)

    Answer

    11cd

    Simplify Square Roots

    Use the Product Property to Simplify Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{21}\)

    \(\sqrt{300}\)

    Exercise \(\PageIndex{22}\)

    \(\sqrt{98}\)

    Answer

    \(7\sqrt{2}\)

    Exercise \(\PageIndex{23}\)

    \(\sqrt{x^{13}}\)

    Exercise \(\PageIndex{24}\)

    \(\sqrt{y^{19}}\)

    Answer

    \(y^{9}\sqrt{y}\)

    Exercise \(\PageIndex{25}\)

    \(\sqrt{16m^4}\)

    Exercise \(\PageIndex{26}\)

    \(\sqrt{36n^{13}}\)

    Answer

    \(6n^{6}\sqrt{n}\)

    Exercise \(\PageIndex{27}\)

    \(\sqrt{288m^{21}}\)

    Exercise \(\PageIndex{28}\)

    \(\sqrt{150n^7}\)

    Answer

    \(5n^3\sqrt{6n}\)

    Exercise \(\PageIndex{29}\)

    \(\sqrt{48r^{5}s^{4}}\)

    Exercise \(\PageIndex{30}\)

    \(\sqrt{108r^{5}s^{3}}\)

    Answer

    \(6r^{2}s\sqrt{3rs}\)

    Exercise \(\PageIndex{31}\)

    \(\frac{10−\sqrt{50}}{5}\)

    Exercise \(\PageIndex{32}\)

    \(\frac{6+\sqrt{72}}{6}\)

    Answer

    \(1+\sqrt{2}\)

    Use the Quotient Property to Simplify Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{33}\)

    \(\sqrt{\frac{16}{25}}\)

    Exercise \(\PageIndex{34}\)

    \(\sqrt{\frac{81}{36}}\)

    Answer

    \(\frac{3}{2}\)

    Exercise \(\PageIndex{35}\)

    \(\sqrt{\frac{x^8}{x^4}}\)

    Exercise \(\PageIndex{36}\)

    \(\sqrt{\frac{y^6}{y^2}}\)

    Answer

    \(y^2\)

    Exercise \(\PageIndex{37}\)

    \(\sqrt{\frac{98p^6}{2p^2}}\)

    Exercise \(\PageIndex{38}\)

    \(\sqrt{\frac{72q^8}{2q^4}}\)

    Answer

    \(6q^2\)

    Exercise \(\PageIndex{39}\)

    \(\sqrt{\frac{65}{121}}\)

    Exercise \(\PageIndex{40}\)

    \(\sqrt{\frac{26}{169}}\)

    Answer

    \(\frac{\sqrt{26}}{13}\)

    Exercise \(\PageIndex{41}\)

    \(\sqrt{\frac{64x^4}{25x^2}}\)

    Exercise \(\PageIndex{42}\)

    \(\sqrt{\frac{36r^{10}}{16r^5}}\)

    Answer

    \(\frac{3r^2\sqrt{r}}{2}\)

    Exercise \(\PageIndex{43}\)

    \(\sqrt{\frac{48p^{3}q^{5}}{27pq}}\)

    Exercise \(\PageIndex{44}\)

    \(\sqrt{\frac{12r^{5}s^{7}}{75r^{2}s}}\)

    Answer

    \(\frac{2rs^3\sqrt{r}}{5}\)

    Add and Subtract Square Roots

    Add and Subtract Like Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{45}\)

    \(3\sqrt{2}+\sqrt{2}\)

    Exercise \(\PageIndex{46}\)

    \(5\sqrt{5}+7\sqrt{5}\)

    Answer

    \(12\sqrt{5}\)

    Exercise \(\PageIndex{47}\)

    \(4\sqrt{y}+4\sqrt{y}\)

    Exercise \(\PageIndex{48}\)

    \(6\sqrt{m}−2\sqrt{m}\)

    Answer

    \(4\sqrt{m}\)

    Exercise \(\PageIndex{49}\)

    \(−3\sqrt{7}+2\sqrt{7}−\sqrt{7}\)

    Exercise \(\PageIndex{50}\)

    \(8\sqrt{13}+2\sqrt{3}+3\sqrt{13}\)

    Answer

    \(11\sqrt{13}+2\sqrt{3}\)

    Exercise \(\PageIndex{51}\)

    \(3\sqrt{5xy}−\sqrt{5xy}+3\sqrt{5xy}\)

    Exercise \(\PageIndex{52}\)

    \(2\sqrt{3rs}+\sqrt{3rs}−5\sqrt{rs}\)

    Answer

    \(3\sqrt{3rs}−5\sqrt{rs}\)

    Add and Subtract Square Roots that Need Simplification

    In the following exercises, simplify.

    Exercise \(\PageIndex{53}\)

    \(\sqrt{32}+3\sqrt{2}\)

    Exercise \(\PageIndex{54}\)

    \(\sqrt{8}+\sqrt{32}\)

    Answer

    \(5\sqrt{2}\)

    Exercise \(\PageIndex{55}\)

    \(\sqrt{72}+\sqrt{50}\)

    Exercise \(\PageIndex{56}\)

    \(\sqrt{48}+\sqrt{75}\)

    Answer

    \(9\sqrt{3}\)

    Exercise \(\PageIndex{57}\)

    \(3\sqrt{32}+\sqrt{98}\)

    Exercise \(\PageIndex{58}\)

    \(\frac{1}{3}\sqrt{27}−\frac{1}{8}\sqrt{192}\)

    Answer

    0

    Exercise \(\PageIndex{59}\)

    \(\sqrt{50y^5}−\sqrt{72y^5}\)

    Exercise \(\PageIndex{60}\)

    Add exercises text here.

    Answer

    \(17n^2\sqrt{2}\)

    Multiply Square Roots

    Multiply Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{61}\)

    \(\sqrt{2}·\sqrt{20}\)

    Exercise \(\PageIndex{62}\)

    \(2\sqrt{2}·6\sqrt{14}\)

    Answer

    \(24\sqrt{7}\)

    Exercise \(\PageIndex{63}\)

    \(\sqrt{2m^2}·\sqrt{20m^4}\)

    Exercise \(\PageIndex{64}\)

    \((\sqrt{62y})(\sqrt{350y^3})\)

    Answer

    \(180y^2\)

    Exercise \(\PageIndex{65}\)

    \((6\sqrt{3v^4})(5\sqrt{30v})\)

    Exercise \(\PageIndex{66}\)

    \((\sqrt{8})^2\)

    Answer

    8

    Exercise \(\PageIndex{67}\)

    \((−\sqrt{10})^2\)

    Exercise \(\PageIndex{68}\)

    \((2\sqrt{5})(5\sqrt{5})\)

    Answer

    50

    Exercise \(\PageIndex{69}\)

    \((−3\sqrt{3})(5\sqrt{18})\)

    Use Polynomial Multiplication to Multiply Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{70}\)

    \(10(2−\sqrt{7})\)

    Answer

    \(20−10\sqrt{7}\)

    Exercise \(\PageIndex{71}\)

    \(\sqrt{3}(4+\sqrt{12})\)

    Exercise \(\PageIndex{72}\)

    \((5+\sqrt{2})(3−\sqrt{2})\)

    Answer

    \(13−2\sqrt{2}\)

    Exercise \(\PageIndex{73}\)

    \((5−3\sqrt{7})(1−2\sqrt{7})\)

    Exercise \(\PageIndex{74}\)

    \((1−3\sqrt{x})(5+2\sqrt{x})\)

    Answer

    \(5−13\sqrt{x}−6x\)

    Exercise \(\PageIndex{75}\)

    \((3+4\sqrt{y})(10−\sqrt{y})\)

    Exercise \(\PageIndex{76}\)

    \((1+6\sqrt{p})^2\)

    Answer

    \(1+12\sqrt{p}+36p\)

    Exercise \(\PageIndex{77}\)

    \((2−6\sqrt{5})^2\)

    Exercise \(\PageIndex{78}\)

    \((3+2\sqrt{7})(3−2\sqrt{7})\)

    Answer

    −19

    Exercise \(\PageIndex{79}\)

    \((6−\sqrt{11})(6+\sqrt{11})\)

    Divide Square Roots

    Divide Square Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{80}\)

    \(\frac{\sqrt{75}}{10}\)

    Answer

    \(\frac{\sqrt{3}}{2}\)

    Exercise \(\PageIndex{81}\)

    \(\frac{2−\sqrt{12}}{6}\)

    Exercise \(\PageIndex{82}\)

    \(\frac{\sqrt{48}}{\sqrt{27}}\)

    Answer

    \(\frac{4}{3}\)

    Exercise \(\PageIndex{83}\)

    \(\frac{\sqrt{75x^7}}{\sqrt{3x^3}}\)

    Exercise \(\PageIndex{84}\)

    \(\frac{\sqrt{20y^5}}{\sqrt{2y}}\)

    Answer

    \(y^2\sqrt{10}\)

    Exercise \(\PageIndex{85}\)

    \(\frac{\sqrt{98p^{6}q^{4}}}{\sqrt{2p^{4}q^{8}}}\)

    Rationalize a One Term Denominator

    In the following exercises, rationalize the denominator.

    Exercise \(\PageIndex{86}\)

    \(\frac{10}{\sqrt{15}}\)

    Answer

    \(\frac{2\sqrt{15}}{3}\)

    Exercise \(\PageIndex{87}\)

    \(\frac{6}{\sqrt{6}}\)

    Exercise \(\PageIndex{88}\)

    \(\frac{5}{3\sqrt{5}}\)

    Answer

    \(\frac{\sqrt{5}}{3}\)

    Exercise \(\PageIndex{89}\)

    \(\frac{10}{2\sqrt{6}}\)

    Exercise \(\PageIndex{90}\)

    \(\sqrt{\frac{3}{28}}\)

    Answer

    \(\frac{\sqrt{21}}{14}\)

    Exercise \(\PageIndex{91}\)

    \(\sqrt{\frac{9}{75}}\)

    Rationalize a Two Term Denominator

    In the following exercises, rationalize the denominator.

    Exercise \(\PageIndex{92}\)

    \(\frac{4}{4+\sqrt{27}}\)

    Answer

    \(\frac{16−12\sqrt{3}}{−11}\)

    Exercise \(\PageIndex{93}\)

    \(\frac{5}{2−\sqrt{10}}\)

    Exercise \(\PageIndex{94}\)

    \(\frac{4}{2−\sqrt{5}}\)

    Answer

    \(−8−4\sqrt{5}\)

    Exercise \(\PageIndex{95}\)

    \(\frac{5}{4−\sqrt{8}}\)

    Exercise \(\PageIndex{96}\)

    \(\frac{\sqrt{2}}{\sqrt{p}+\sqrt{3}}\)

    Answer

    \(\frac{\sqrt{2p}−\sqrt{6}}{p−3}\)

    Exercise \(\PageIndex{97}\)

    \(\frac{\sqrt{x}−\sqrt{2}}{\sqrt{x}+\sqrt{2}}\)

    Solve Equations with Square Roots

    Solve Radical Equations

    In the following exercises, solve the equation.

    Exercise \(\PageIndex{98}\)

    \(\sqrt{7z+1}=6\)

    Answer

    5

    Exercise \(\PageIndex{99}\)

    \(\sqrt{4u−2}−4=0\)

    Exercise \(\PageIndex{100}\)

    \(\sqrt{6m+4}−5=0\)

    Answer

    \(\frac{7}{2}\)

    Exercise \(\PageIndex{101}\)

    \(\sqrt{2u−3}+2=0\)

    Exercise \(\PageIndex{102}\)

    \(\sqrt{u−4}+4=u\)

    Answer

    no solution

    Exercise \(\PageIndex{103}\)

    \(\sqrt{v−9}+9=0\)​​​​​​​

    Exercise \(\PageIndex{104}\)

    \(\sqrt{r−4}−r=−10\)

    Answer

    13

    Exercise \(\PageIndex{105}\)

    \(\sqrt{s−9}−s=−9\)

    Exercise \(\PageIndex{106}\)

    \(2\sqrt{2x−7}−4=8\)

    Answer

    \(\frac{43}{2}\)

    Exercise \(\PageIndex{107}\)

    \(\sqrt{2−x}=\sqrt{2x−7}\)

    Exercise \(\PageIndex{108}\)

    \(\sqrt{a}+3=\sqrt{a+9}\)

    Answer

    0

    Exercise \(\PageIndex{109}\)

    \(\sqrt{r}+3=\sqrt{r+4}\)​​​​​​​

    Exercise \(\PageIndex{110}\)

    \(\sqrt{u}+2=\sqrt{u+5}\)

    Answer

    \(\frac{11}{6}\)

    Exercise \(\PageIndex{111}\)

    \(\sqrt{n+11}−1=\sqrt{n+4}\)

    Exercise \(\PageIndex{112}\)

    \(\sqrt{y+5}+1=\sqrt{2y+3}\)

    Answer

    11

    ​​​​​​​Use Square Roots in Applications

    In the following exercises, solve. Round approximations to one decimal place.

    Exercise \(\PageIndex{113}\)

    A pallet of sod will cover an area of about 600 square feet. Trinh wants to order a pallet of sod to make a square lawn in his backyard. Use the formula \(s=\sqrt{A}\) to find the length of each side of his lawn.​​​​​​​

    Exercise \(\PageIndex{114}\)

    A helicopter dropped a package from a height of 900 feet above a stranded hiker. Use the formula \(t=\frac{\sqrt{h}}{4}\) to find how many seconds it took for the package to reach the hiker.

    Answer

    7.5 seconds

    Exercise \(\PageIndex{115}\)

    Officer Morales measured the skid marks of one of the cars involved in an accident. The length of the skid marks was 245 feet. Use the formula \(s=\sqrt{24d}\) to find the speed of the car before the brakes were applied.

    Higher Roots

    Simplify Expressions with Higher Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{116}\)
    1. \(\sqrt[6]{64}\)
    2. \(\sqrt[3]{64}\)
    Answer
    1. 2
    2. 4
    Exercise \(\PageIndex{117}\)
    1. \(\sqrt[3]{−27}\)
    2. \(\sqrt[4]{−64}\)
    Exercise \(\PageIndex{118}\)
    1. \(\sqrt[9]{d^9}\)
    2. \(\sqrt[8]{v^8}\)
    Answer
    1. d
    2. |v|
    Exercise \(\PageIndex{119}\)
    1. \(\sqrt[5]{a^{10}}\)
    2. \(\sqrt[3]{b^{27}}\)
    Exercise \(\PageIndex{120}\)
    1. \(\sqrt[4]{16x^8}\)
    2. \(\sqrt[6]{64y^{12}}\)
    Answer
    1. \(2x^2\)
    2. \(2y^2\)
    Exercise \(\PageIndex{121}\)
    1. \(\sqrt[7]{128r^{14}}\)
    2. \(\sqrt[4]{81s^{24}}\)

    Use the Product Property to Simplify Expressions with Higher Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{122}\)
    1. \(\sqrt[9]{d^9}\)

    .

    Answer
    1. d

    .​​​​​​​​​​​​​​

    Exercise \(\PageIndex{123}\)
    1. \(\sqrt[3]{54}\)
    2. \(\sqrt[4]{128}\)
    Exercise \(\PageIndex{124}\)
    1. \(\sqrt[5]{64c^8}\)
    2. \(\sqrt[4]{48d^7}\)
    Answer
    1. \(2c\sqrt[5]{2c^3}\)
    2. \(2d\sqrt[4]{3d^3}\)
    Exercise \(\PageIndex{125}\)
    1. \(\sqrt[3]{343q^7}\)
    2. \(\sqrt[6]{192r^9}\)
    Exercise \(\PageIndex{126}\)
    1. \(\sqrt[3]{−500}\)
    2. \(\sqrt[4]{−16}\)
    Answer
    1. \(−5\sqrt[3]{4}\)
    2. not a real number
    ​​​​​​​Use the Quotient Property to Simplify Expressions with Higher Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{127}\)

    \(\sqrt[5]{\frac{r^{10}}{r^5}}\)

    Exercise \(\PageIndex{128}\)

    \(\sqrt[3]{\frac{w^{12}}{w^2}}\)

    Answer

    \(w^3\sqrt[3]{w}\)

    Exercise \(\PageIndex{129}\)

    \(\sqrt[4]{\frac{64y^8}{4y^5}}\)

    Exercise \(\PageIndex{130}\)

    \(\sqrt[3]{\frac{54z^9}{2z^3}}\)

    Answer

    \(3z^2\)

    Exercise \(\PageIndex{131}\)

    \(\sqrt[6]{\frac{64a^7}{b^2}}\)

    ​​​​​​​Add and Subtract Higher Roots

    In the following exercises, simplify.

    Exercise \(\PageIndex{132}\)

    \(4\sqrt[5]{20}−2\sqrt[5]{20}\)

    Answer

    \(2\sqrt[5]{20}\)

    Exercise \(\PageIndex{133}\)

    \(4\sqrt[3]{18}+3\sqrt[3]{18}\)

    Exercise \(\PageIndex{134}\)

    \(\sqrt[4]{1250}−\sqrt[4]{162}\)

    Answer

    \(2\sqrt[4]{2}\)

    Exercise \(\PageIndex{135}\)

    \(\sqrt[3]{640c^5}−\sqrt[3]{−80c^3}\)

    Exercise \(\PageIndex{136}\)

    \(\sqrt[5]{96t^8}+\sqrt[5]{486t^4}\)

    Answer

    \(2t^\sqrt[5]{3t^3}+3\sqrt[5]{2t^4}\)

    Rational Exponents

    Simplify Expressions with \(a^{\frac{1}{n}}\)

    In the following exercises, write as a radical expression.

    Exercise \(\PageIndex{137}\)

    \(r^{\frac{1}{8}}\)

    Exercise \(\PageIndex{138}\)

    \(s^{\frac{1}{10}}\)

    Answer

    .

    ​​​​​​​In the following exercises, write with a rational exponent.

    Exercise \(\PageIndex{139}\)

    \(\sqrt[5]{u}\)

    Exercise \(\PageIndex{140}\)

    \(\sqrt[6]{v}\)

    Answer

    \(v^{\frac{1}{6}}\)

    Exercise \(\PageIndex{141}\)

    \(\sqrt[3]{9m}\)

    Exercise \(\PageIndex{142}\)

    \(\sqrt[6]{10z}\)

    Answer

    \((10z)^{\frac{1}{6}}\)

    ​​​​​​​In the following exercises, simplify.

    Exercise \(\PageIndex{143}\)

    \(16^{\frac{1}{4}}\)

    Exercise \(\PageIndex{144}\)

    \(32^{\frac{1}{5}}\)

    Answer

    2

    Exercise \(\PageIndex{145}\)

    \((−125)^{\frac{1}{3}}\)

    Exercise \(\PageIndex{146}\)

    \((125)^{−\frac{1}{3}}\)

    Answer

    \(\frac{1}{5}\)

    Exercise \(\PageIndex{147}\)

    \((−9)^{\frac{1}{2}}\)

    Exercise \(\PageIndex{148}\)

    \((36)^{−\frac{1}{2}}\)

    Answer

    \(\frac{1}{6}\)

    ​​​​​​​Simplify Expressions with \(a^{\frac{m}{n}}\)

    In the following exercises, write with a rational exponent.

    Exercise \(\PageIndex{149}\)

    \(\sqrt[3]{q^5}\)

    Exercise \(\PageIndex{150}\)

    \(\sqrt[5]{n^8}\)

    Answer

    \(n^{\frac{8}{5}}\)

    In the following exercises, simplify.

    Exercise \(\PageIndex{151}\)

    \(27^{−\frac{2}{3}}\)

    Exercise \(\PageIndex{152}\)

    \(64^{\frac{5}{2}}\)

    Answer

    32,768

    Exercise \(\PageIndex{153}\)

    \(36^{\frac{3}{2}}\)

    Exercise \(\PageIndex{154}\)

    \(81^{−\frac{5}{2}}\)

    Answer

    \(\frac{1}{59,049}\)

    ​​​​​​​Use the Laws of Exponents to Simplify Expressions with Rational Exponents

    In the following exercises, simplify.

    Exercise \(\PageIndex{155}\)

    \(3^{\frac{4}{5}}·3^{\frac{6}{5}}\)

    Exercise \(\PageIndex{156}\)

    \((x^6)^{\frac{4}{3}}\)

    Answer

    \(x^8\)

    Exercise \(\PageIndex{157}\)

    \(\frac{z^{\frac{5}{2}}}{z^{\frac{7}{5}}}\)

    Exercise \(\PageIndex{158}\)

    \((16s^{\frac{9}{4}})^{\frac{1}{4}}\)

    Answer

    \(2s^{\frac{9}{16}}\)

    Exercise \(\PageIndex{159}\)

    \((m^{8}n^{12})^{\frac{1}{4}}\)

    Exercise \(\PageIndex{160}\)

    \(\frac{z^{\frac{2}{3}}·z^{−\frac{1}{3}}}{z^{−\frac{5}{3}}}\)

    Answer

    \(z^2\)​​​​​​​

    Practice Test

    In the following exercises, simplify.

    Exercise \(\PageIndex{161}\)

    \(\sqrt{81+144}\)

    Exercise \(\PageIndex{162}\)

    \(\sqrt{169m^{4}n^{2}}\)

    Answer

    \(13m^{2}|n|\)

    Exercise \(\PageIndex{163}\)

    \(\sqrt{36n^{13}}\)

    Exercise \(\PageIndex{164}\)

    \(3\sqrt{13}+5\sqrt{2}+\sqrt{13}\)

    Answer

    \(4\sqrt{13}+5\sqrt{2}\)

    Exercise \(\PageIndex{165}\)

    \(5\sqrt{20}+2\sqrt{125}\)

    Exercise \(\PageIndex{166}\)

    \((3\sqrt{6y})(\sqrt{250y^3})\)

    Answer

    \(180y^2\sqrt{3}\)

    Exercise \(\PageIndex{167}\)

    \((2−5\sqrt{x})(3+\sqrt{x})\)

    Exercise \(\PageIndex{168}\)

    \((1−2\sqrt{q})^2\)

    Answer

    \(1−4\sqrt{q}+4q\)

    Exercise \(\PageIndex{169}\)
    1. \(\sqrt{a^{12}}\)
    2. \(\sqrt[3]{b^{21}}\)
    Exercise \(\PageIndex{170}\)
    1. \(\sqrt[4]{81x^{12}}\)
    2. \(\sqrt[6]{64y^{18}}\)
    Answer
    1. \(3x^3\)
    2. \(2y^3\)
    Exercise \(\PageIndex{171}\)

    \(\sqrt[6]{\frac{64r^{12}}{25r^6}}\)​​​​​​​

    Exercise \(\PageIndex{172}\)

    \(\sqrt{\frac{14y^3}{7y}}\)

    Answer

    \(y\sqrt{2}\)

    Exercise \(\PageIndex{173}\)

    \(\frac{\sqrt{256x^7}}{\sqrt{54x^2}}\)

    Exercise \(\PageIndex{174}\)

    \(\sqrt[4]{512}−2\sqrt[4]{32}\)

    Answer

    0

    Exercise \(\PageIndex{175}\)
    1. \(256^{\frac{1}{4}}\)
    2. \(243^{\frac{1}{5}}\)
    Exercise \(\PageIndex{176}\)

    \(49^{\frac{3}{2}}\)

    Answer

    343

    Exercise \(\PageIndex{177}\)

    \(25^{−\frac{5}{2}}\)

    Exercise \(\PageIndex{178}\)

    \(\frac{w^{\frac{3}{4}}}{w^{\frac{7}{4}}}\)

    Answer

    \(\frac{1}{w}\)

    Exercise \(\PageIndex{179}\)

    \((27s^{\frac{3}{5}})^{\frac{1}{3}}\)

    ​​​​​​​In the following exercises, rationalize the denominator.

    Exercise \(\PageIndex{180}\)

    \(\frac{3}{2\sqrt{6}}\)

    Answer

    \(\frac{\sqrt{6}}{4}\)

    Exercise \(\PageIndex{181}\)

    \(\frac{\sqrt{3}}{\sqrt{x}+\sqrt{5}}\)

    In the following exercises, solve.

    Exercise \(\PageIndex{182}\)

    \(3\sqrt{2x−3}−20=7\)

    Answer

    42​​​​​​​

    Exercise \(\PageIndex{183}\)

    \(\sqrt{3u−2}=\sqrt{5u+1}\)

    ​​​​​​​In the following exercise, solve.

    Exercise \(\PageIndex{184}\)

    A helicopter flying at an altitude of 600 feet dropped a package to a lifeboat. Use the formula \(t=\frac{\sqrt{h}}{4}\) to find how many seconds it took for the package to reach the hiker. Round your answer to the nearest tenth of a second.

    Answer

    6.1 seconds


    This page titled Chapter 9 Review Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.