Skip to main content
Mathematics LibreTexts

13.4: Introduction to Conics- Answers to the Homework Exercises

  • Page ID
    45126
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Introduction to Conics

    1. \(\left(0,\dfrac{1}{2}\right)\); \(\sqrt{109}\approx 10.44\)
    1. \(\left(-\dfrac{1}{2},-\dfrac{3}{2}\right)\); \(\sqrt{34}\approx 5.83\)
    1. \(\left(\dfrac{185}{2},-69\right)\); \(41\)
    1. circle
    1. ellipse
    1. parabola
    1. parabola

    Circles

    1. \((x+1)^2+(y+5)^2=100\)
      clipboard_e2daa35634f0d90ea4180c59fb0414183.png
      Figure 13.4.1
    1. \((x+3)^2+\left(y-\dfrac{7}{13}\right)^2=\dfrac{1}{4}\)
      clipboard_e768f1240e6276acda885c9d9e032c77c.png
      Figure 13.4.2
    1. \((x+9)^2+y^2=25\); center \((-9,0)\), radius \(r=5\)
      clipboard_eb22b0537bc1cd95fb115438068d6abf7.png
      Figure 13.4.3
    1. \(\left(x+\dfrac{5}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{30}{4}\); center \(\left(-\dfrac{5}{2},\dfrac{1}{2}\right)\), radius \(r=\dfrac{\sqrt{30}}{2}\)
      clipboard_e27e1b5abe53502c73483aabb6de7ac6a.png
      Figure 13.4.4
    1. \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{5}\right)^2=\dfrac{161}{100}\); center \(\left(-\dfrac{1}{2},\dfrac{3}{5}\right)\), radius \(r=\dfrac{\sqrt{161}}{10}\)
      clipboard_e48ea4b708e6e51e741d3546bacbebf60.png
      Figure 13.4.5
    1. \((x-3)^2+(y-6)^2=20\)
    1. \((x-1)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{13}{2}\)

    Parabolas

    1. Vertex \((3,0)\); Focus \((3,-4)\); Directrix \(y=4\)
      clipboard_e6548057fdda420a45893ccba380f6787.png
      Figure 13.4.6
    1. Vertex \((-3,2)\); Focus \((-6,2)\); Directrix \(x=0\)
      clipboard_eaa495579a3d2b13cdfab0a89bbaa9500.png
      Figure 13.4.7
    1. Vertex \((1,-3)\); Focus \((1,-2)\); Directrix \(y=-4\)
      clipboard_ed327db463912a90f3ec9a28f1898bbb2.png
      Figure 13.4.8
    1. Vertex \((2,4)\); Focus \(\left(\dfrac{13}{2},4\right)\); Directrix \(x=-\dfrac{5}{2}\)
      clipboard_e6f71ae9faee62fe289f7aa215019d4be.png
      Figure 13.4.9
    1. \((x+1)^2=8(y-6)\); Vertex \((-1,6)\); Focus \((-1,8)\); Directrix \(y=4\)
      clipboard_e436d72e3336e0a259b565f0254e84164.png
      Figure 13.4.10
    1. \((y+1)^2=-\dfrac{1}{2}(x-10)\); Vertex \((10,-1)\); Focus \(\left(\dfrac{79}{8},-1\right)\); Directrix \(x=\dfrac{81}{8}\)
      clipboard_e1616b4c5ffc259dbaa5dbcb832ed3d55.png
      Figure 13.4.11

    This page titled 13.4: Introduction to Conics- Answers to the Homework Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Darlene Diaz (ASCCC Open Educational Resources Initiative) via source content that was edited to the style and standards of the LibreTexts platform.