7.3: Integrability Conditions
( \newcommand{\kernel}{\mathrm{null}\,}\)
If a<b and f:[a,b]→R is monotonic, then f is integrable on [a,b].
- Proof
-
Suppose f is nondecreasing. Given ϵ>0, let n∈Z+ be large enough that
(f(b)−f(a))(b−a)n<ϵ.
For i=0,1,…,n, let
xi=a+(b−a)in.
Let P={x0,x1,…,xn}. Then
U(f,P)−L(f,P)=n∑i=1f(xi)(xi−xi−1)−n∑i=1f(xi−1)(xi−xi−1)=n∑i=1(f(xi)−f(xi−1))b−an=b−an((f(x1)−f(x0))+(f(x2)−f(x1))+⋯+(f(xn−1)−f(xn−2))+(f(xn)−f(xn−1)))=b−an(f(b)−f(a))<ϵ.
Hence f is integrable on [a,b]. Q.E.D.
Let φ:Q∩[0,1]→Z+ be a one-to-one correspondence. Define f:[0,1]→R by
f(x)=∑q∈Q∩[0,1]q≤x12φ(q).
Then f is increasing on [0,1], and hence integrable on [0,1].
If a<b and f:[a,b]→R is continuous, then f is integrable on [a,b].
- Proof
-
Given ϵ>0, let
γ=ϵb−a.
Since f is uniformly continuous on [a,b], we may choose δ>0 such that
|f(x)−f(y)|<γ
whenever |x−y|<δ. Let P={x0,x1,…,xn} be a partition with
sup{|xi−xi−1|:i=1,2,…,n}<δ.
If, for i=1,2,…,n,
mi=inf{f(x):xi−1≤x≤xi}
and
Mi=sup{f(x):xi−1≤x≤xi},
then Mi−mi<γ. Hence
U(f,P)−L(f,P)=n∑i=1Mi(xi−xi−1)−n∑i=1mi(xi−xi−1)=n∑i=1(Mi−mi)(xi−xi−1)<γn∑i=1(xi−xi−1)=γ(b−a)=ϵ.
Thus f is integrable on [a,b]. Q.E.D.
Suppose a<b,f:[a,b]→R is bounded, and c∈[a,b]. Show that if f is continuous on [a,b]∖{c}, then f is integrable on [a,b].
Suppose a<b and f is continuous on [a,b] with f(x)≥0 for all x∈[a,b]. Show that if
∫baf=0,
then f(x)=0 for all x∈[a,b].
Suppose a<b and f is continuous on [a,b]. For i=0,1,…,n, n∈Z+, let
xi=a+(b−a)in
and, for i=1,2,…,n, let ci∈[xi−1,xi]. Show that
∫baf=limn→∞b−ann∑i=1f(ci).
In the notation of Exercise 7.3.3, we call the approximation
∫baf≈b−ann∑i=1f(ci)
a right-hand rule approximation if ci=xi, a left-hand rule approximation if ci=xi−1, and a midpoint rule approximation if
ci=xi−1+xi2.
These are basic ingredients in creating numerical approximations to integrals.