8.4: The Logarithm Functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
Given a positive real number x, we call
log(x)=∫x11tdt
the logarithm of x.
Note that log(1)=0,log(x)<0 when 0<x<1, and log(x)>0 when x>1.
The function f(x)=log(x) is an increasing, differentiable function with
f′(x)=1x
for all x>0.
- Proof
-
Using the Fundamental Theorem of Calculus, we have
f′(x)=1x>0
for all x>0, from which the result follows. Q.E.D.
For any x>0,
log(1x)=−log(x).
- Proof
-
Using the substitution t=1u, we have
log(1x)=∫1x11tdt=∫x1u(−1u2)du=−∫x11udu=−log(x).
Q.E.D.
For any positive real numbers x and y,
log(xy)=log(x)+log(y).
- Proof
-
Using the substitution t=xu, we have
log(xy)=∫xy11tdt=∫y1xxxudu=∫11x1udu+∫y11udu=−∫1x11udu+log(y)=−log(1x)+log(y)=log(x)+log(y).
Q.E.D.
If r∈Q and x is a positive real number, then
log(xr)=rlog(x).
- Proof
-
Using the substitution t=ur, we have
log(xr)=∫xr11tdt=∫x1rur−1urdu=r∫x11udu=rlog(x).
Q.E.D.
limx→+∞log(x)=+∞ and limx→0+log(x)=−∞.
- Proof
-
Given a real number M, choose an integer n for which nlog(2)>M (there exists such an n since log(2)>0 ). Then for any x>2n, we have
log(x)>log(2n)=nlog(2)>M.
Hence limx→+∞log(x)=+∞.
Similarly, given any real number M, we may choose an integer n for which −nlog(2)<M. Then for any 0<x<12n, we have
log(x)<log(12n)=−nlog(2)<M.
Hence limx→0+log(x)=−∞. Q.E.D.
Note that the logarithm function has domain (0,+∞) and range (−∞,+∞).
Show that for any rational number α>0,
limx→+∞xα=+∞.
For any rational number α>0,
limx→+∞log(x)xα=0.
- Proof
-
Choose a rational number β such that 0<β<α. Now for any t>1,
1t<1ttβ=1t1−β.
Hence
log(x)=∫x11tdt<∫x11t1−βdt=xβ−1β<xββ
whenever x>1. Thus
0<log(x)xα<1βxα−β
for x>1. But
limx→+∞1βxα−β=0,
so
limx→+∞log(x)xα=0.
Q.E.D.
Show that
limx→0+xαlog(x)=0
for any rational number α>0.