Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.11.E: Problems on Limits of Sequences (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

See also Chapter 2, §13.

Exercise \PageIndex{1}

Prove that if x_{m} \rightarrow 0 and if \left\{a_{m}\right\} is bounded in E^{1} or C, then
a_{m} x_{m} \rightarrow 0.
This is true also if the x_{m} are vectors and the a_{m} are scalars (or vice versa).
[Hint: If \left\{a_{m}\right\} is bounded, there is a K \in E^{1} such that
(\forall m) \quad\left|a_{m}\right|<K.
As x_{m} \rightarrow 0,
(\forall \varepsilon>0)(\exists k)(\forall m>k) \quad\left|x_{m}\right|<\frac{\varepsilon}{K}(\mathrm{why} ?),
so \left|a_{m} x_{m}\right|<\varepsilon . ]

Exercise \PageIndex{2}

Prove Theorem 1(\text { ii }).
[Hint: By Corollary 2(ii)(iii) in §14, we must show that a_{m} x_{m}-a w \rightarrow 0. Now
a_{m} x_{m}-a q=a_{m}\left(x_{m}-q\right)+\left(a_{m}-a\right) q.
where x_{m}-q \rightarrow 0 and a_{m}-a \rightarrow 0 by Corollary 2 of §14. Hence by Problem 1,
a_{m}\left(x_{m}-q\right) \rightarrow 0 \text { and }\left(a_{m}-a\right) q \rightarrow 0
(treat q as a constant sequence and use Corollary 5 in §14). Now apply Theorem 1(\mathrm{i}) . ]

Exercise \PageIndex{3}

Prove that if a_{m} \rightarrow a and a \neq 0 in E^{1} or C, then
(\exists \varepsilon>0)(\exists k)(\forall m>k) \quad\left|a_{m}\right| \geq \varepsilon.
(We briefly say that the a_{m} are bounded away from 0, for m>k . ) Hence prove the boundedness of \left\{\frac{1}{a_{m}}\right\} for m>k.
[Hint: For the first part, proceed as in the proof of Corollary 1 in §14, \text { with } x_{m}=a_{m}, p=a, and q=0 .
For the second part, the inequalities
(\forall m>k) \quad\left|\frac{1}{a_{m}}\right| \leq \frac{1}{\varepsilon}
lead to the desired result. ]

Exercise \PageIndex{4}

Prove that if a_{m} \rightarrow a \neq 0 in E^{1} or C, then
\frac{1}{a_{m}} \rightarrow \frac{1}{a}.
Use this and Theorem 1(\text { ii) to prove Theorem } 1(\text { iii), noting that }
\frac{x_{m}}{a_{m}}=x_{m} \cdot \frac{1}{a_{m}}.
[Hint: Use Note 3 and Problem 3 to find that
(\forall m>k) \quad\left|\frac{1}{a_{m}}-\frac{1}{a}\right|=\frac{1}{|a|}\left|a_{m}-a\right| \frac{1}{\left|a_{m}\right|},
where \left\{\frac{1}{a_{m}}\right\} is bounded and \frac{1}{|a|}\left|a_{m}-a\right| \rightarrow 0 . (Why?)
Hence, by Problem 1,\left|\frac{1}{a_{m}}-\frac{1}{a}\right| \rightarrow 0 . Proceed. ]

Exercise \PageIndex{5}

Prove Corollaries 1 and 2 in two ways:
(i) Use Definition 2 of Chapter 2, §13 for Corollary 1(a), treating infinite limits separately; then prove (b) by assuming the opposite and exhibiting a contradiction to (a) .
(ii) Prove (b) first by using Corollary 2 and Theorem 3 of Chapter 2, §13; then deduce (a) by contradiction.

Exercise \PageIndex{6}

Prove Corollary 3 in two ways (cf. Problem 5).

Exercise \PageIndex{7}

Prove Theorem 4 as suggested, and also without using Theorem 1(\mathrm{i}).

Exercise \PageIndex{8}

Prove Theorem 2.
[Hint: If \overline{x}_{m} \rightarrow \overline{p}, then
(\forall \varepsilon>0)(\exists q)(\forall m>q) \quad \varepsilon>\left|\overline{x}_{m}-\overline{p}\right| \geq\left|x_{m k}-p_{k}\right| . \quad(\mathrm{Why} ?)
Thus by definition x_{m k} \rightarrow p_{k}, k=1,2, \ldots, n.
Conversely, if so, use Theorem 1(\mathrm{i})(\text { ii }) to obtain
\sum_{k=1}^{n} x_{m k} \vec{e}_{k} \rightarrow \sum_{k=1}^{n} p_{k} \vec{e}_{k},
with \vec{e}_{k} as in Theorem 2 of §§1-3].

Exercise \PageIndex{8'}

In Problem 8, prove the converse part from definitions. (\text { Fix } \varepsilon>0, \text { etc. })

Exercise \PageIndex{9}

Find the following limits in E^{1}, in two ways: (i) using Theorem 1, justifying each step; (ii) using definitions only.
\begin{array}{ll}{\text { (a) } \lim _{m \rightarrow \infty} \frac{m+1}{m} ;} & {\text { (b) } \lim _{m \rightarrow \infty} \frac{3 m+2}{2 m-1}} \\ {\text { (c) } \lim _{n \rightarrow \infty} \frac{1}{1+n^{2}} ;} & {\text { (d) } \lim _{n \rightarrow \infty} \frac{n(n-1)}{1-2 n^{2}}}\end{array}
[\text { Solution of }(\mathrm{a}) \text { by the first method: Treat }
\frac{m+1}{m}=1+\frac{1}{m}
as the sum of x_{m}=1 (constant) and
y_{m}=\frac{1}{m} \rightarrow 0 \text { (proved in } § 14 ).
Thus by Theorem 1(\mathrm{i}),
\frac{m+1}{m}=x_{m}+y_{m} \rightarrow 1+0=1.
Second method: Fix \varepsilon>0 and find k such that
(\forall m>k) \quad\left|\frac{m+1}{m}-1\right|<\varepsilon .
Solving for m, show that this holds if m>\frac{1}{\varepsilon} . Thus take an integer k>\frac{1}{\varepsilon}, so
(\forall m>k) \quad\left|\frac{m+1}{m}-1\right|<\varepsilon.
Caution: One cannot apply Theorem 1 (iii) directly, treating (m+1) / m as the quotient of x_{m}=m+1 and a_{m}=m, because x_{m} and a_{m} diverge in E^{1} . (Theorem 1 does not apply to infinite limits.) As a remedy, we first divide the numerator and denominator by a suitable power of m(\text { or } n) . ]

Exercise \PageIndex{10}

Prove that
\left|x_{m}\right| \rightarrow+\infty \text { in } E^{*} \text { iff } \frac{1}{x_{m}} \rightarrow 0 \quad\left(x_{m} \neq 0\right).

Exercise \PageIndex{11}

Prove that if
x_{m} \rightarrow+\infty \text { and } y_{m} \rightarrow q \neq-\infty \text { in } E^{*},
then
x_{m}+y_{m} \rightarrow+\infty.
This is written symbolically as
" +\infty+q=+\infty \text { if } q \neq-\infty ."
Do also
" -\infty+q=-\infty \text { if } q \neq+\infty . "
Prove similarly that
"(+\infty) \cdot q=+\infty \text { if } q>0"
and
"(+\infty) \cdot q=-\infty \text { if } q<0."
[Hint: Treat the cases q \in E^{1}, q=+\infty, and q=-\infty separately. Use definitions.]

Exercise \PageIndex{12}

Find the limit (or \underline{\lim} and \overline{\lim}) of the following sequences in E^{*} :
(a) x_{n}=2 \cdot 4 \cdots 2 n=2^{n} n !;
(b) x_{n}=5 n-n^{3} ;
(c) x_{n}=2 n^{4}-n^{3}-3 n^{2}-1;
(d) x_{n}=(-1)^{n} n !;
(e) x_{n}=\frac{(-1)^{n}}{n !}.
[Hint for (\mathrm{b}) : x_{n}=n\left(5-n^{2}\right) ; use Problem 11.]

Exercise \PageIndex{13}

Use Corollary 4 in §14, to find the following:
(a) \lim _{n \rightarrow \infty} \frac{(-1)^{n}}{1+n^{2}};
(b) \lim _{n \rightarrow \infty} \frac{1-n+(-1)^{n}}{2 n+1}.

Exercise \PageIndex{14}

Find the following.
(a) \lim _{n \rightarrow \infty} \frac{1+2+\cdots+n}{n^{2}};
(b) \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{2}}{n^{3}+1};
(c) \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{3}}{n^{4}-1}.
[Hint: Compute \sum_{k=1}^{n} k^{m} using Problem 10 of Chapter 2, §§5-6.]
What is wrong with the following "solution" of (a) : \frac{1}{n^{2}} \rightarrow 0, \frac{2}{n^{2}} \rightarrow 0, etc.; hence the limit is 0?

Exercise \PageIndex{15}

For each integer m \geq 0, let
S_{m n}=1^{m}+2^{m}+\cdots+n^{m}.
Prove by induction on m that
\lim _{n \rightarrow \infty} \frac{S_{m n}}{(n+1)^{m+1}}=\frac{1}{m+1}.
[Hint: First prove that
(m+1) S_{m n}=(n+1)^{m+1}-1-\sum_{i=0}^{m-1}\left(\begin{array}{c}{m+1} \\ {i}\end{array}\right) S_{m i}
by adding up the binomial expansions of (k+1)^{m+1}, k=1, \ldots, n . ]

Exercise \PageIndex{16}

Prove that
\lim _{n \rightarrow \infty} q^{n}=+\infty \text { if } q>1 ; \quad \lim _{n \rightarrow \infty} q^{n}=0 \text { if }|q|<1 ; \quad \lim _{n \rightarrow \infty} 1^{n}=1.
[Hint: If q>1, put q=1+d, d>0 . By the binomial expansion,
q^{n}=(1+d)^{n}=1+n d+\cdots+d^{n}>n d \rightarrow+\infty . \quad(\mathrm{Why?})
If |q|<1, then \left|\frac{1}{q}\right|>1 ; so \lim \left|\frac{1}{q}\right|^{n}=+\infty ; use Problem 10 . ]

Exercise \PageIndex{17}

Prove that
\lim _{n \rightarrow \infty} \frac{n}{q^{n}}=0 \text { if }|q|>1, \text { and } \lim _{n \rightarrow \infty} \frac{n}{q^{n}}=+\infty \text { if } 0<q<1.
[Hint: If |q|>1, use the binomial as in Problem 16 to obtain
|q|^{n}>\frac{1}{2} n(n-1) d^{2}, n \geq 2, \text { so } \frac{n}{|q|^{n}}<\frac{2}{(n-1) d^{2}} \rightarrow 0.
Use Corollary 3 with
x_{n}=0,\left|z_{n}\right|=\frac{n}{|q|^{n}}, \text { and } y_{n}=\frac{2}{(n-1) d^{2}}
to get \left|z_{n}\right| \rightarrow 0 ; hence also z_{n} \rightarrow 0 by Corollary 2(\text { iii) of } §14 . \text { In case } 0<q<1, \text { use } 10.]

Exercise \PageIndex{18}

Let r, a \in E^{1} . Prove that
\lim _{n \rightarrow \infty} n^{r} a^{-n}=0 \text { if }|a|>1.
[Hint: If r>1 and a>1, use Problem 17 with q=a^{1 / r} to get n a^{-n / r} \rightarrow 0 . As
0<n^{r} a^{-n}=\left(n a^{-n / r}\right)^{r} \leq n a^{-n / r} \rightarrow 0,
obtain n^{r} a^{-n} \rightarrow 0.
If r<1, then n^{r} a^{-n}<n a^{-n} \rightarrow 0 . What if a<-1 ? ]

Exercise \PageIndex{19}

(Geometric series.) Prove that if |q|<1, then
\lim _{n \rightarrow \infty}\left(a+a q+\cdots+a q^{n-1}\right)=\frac{a}{1-q}.
[Hint:
a\left(1+q+\cdots+q^{n-1}\right)=a \frac{1-q^{n}}{1-q},
where q^{n} \rightarrow 0, by Problem 16 . ]

Exercise \PageIndex{20}

Let 0<c<+\infty . Prove that
\lim _{n \rightarrow \infty} \sqrt[n]{c}=1.
\left[\text { Hint: If } c>1, \text { put } \sqrt[n]{c}=1+d_{n}, d_{n}>0 . \text { Expand } c=\left(1+d_{n}\right)^{n} \text { to show that }\right.
0<d_{n}<\frac{c}{n} \rightarrow 0,
so d_{n} \rightarrow 0 by Corollary 3 . ]

Exercise \PageIndex{21}

Investigate the following sequences for monotonicity, \underline{\lim}, \overline{\lim}, and \lim. (In each case, find suitable formula, or formulas, for the general term.)
(a) 2,5,10,17,26, \ldots;
(b) 2,-2,2,-2, \ldots;
(c) 2,-2,-6,-10,-14, \ldots ;
(d) 1,1,-1,-1,1,1,-1,-1, \ldots ;
(e) \frac{3 \cdot 2}{1}, \frac{4 \cdot 6}{4}, \frac{5 \cdot 10}{9}, \frac{6 \cdot 14}{16}, \ldots.

Exercise \PageIndex{22}

Do Problem 21 for the following sequences.
(a) \frac{1}{2 \cdot 3}, \frac{-8}{3 \cdot 4}, \frac{27}{4 \cdot 5}, \frac{-64}{5 \cdot 6}, \frac{125}{6 \cdot 7}, \ldots ;
(b) \frac{2}{9},-\frac{5}{9}, \frac{8}{9},-\frac{13}{9}, \ldots ;
(c) \frac{2}{3},-\frac{2}{5}, \frac{4}{7},-\frac{4}{9}, \frac{6}{11},-\frac{6}{13}, \ldots
(d) 1,3,5,1,1,3,5,2,1,3,5,3, \ldots, 1,3,5, n, \ldots ;
(e) 0.9,0.99,0.999, \ldots;
(f) +\infty, 1,+\infty, 2,+\infty, 3, \dots ;
(\mathrm{g})-\infty, 1,-\infty, \frac{1}{2}, \ldots,-\infty, \frac{1}{n}, \ldots.

Exercise \PageIndex{23}

Do Problem 20 as follows: If c \geq 1,\{\sqrt[n]{c}\} \downarrow .(\mathrm{Why} ?) By Theorem 3, p=\lim _{n \rightarrow \infty} \sqrt[n]{c} exists and
(\forall n) \quad 1 \leq p \leq \sqrt[n]{c}, \text { i.e., } 1 \leq p^{n} \leq c .
By Problem 16, p cannot be >1, so p=1.
In case 0<c<1, consider \sqrt[n]{1 / c} and use Theorem 1(\text { iii) }.

Exercise \PageIndex{24}

Prove the existence of \lim x_{n} and find it when x_{n} is defined inductively by
(i) x_{1}=\sqrt{2}, x_{n+1}=\sqrt{2 x_{n}};
(ii) x_{1}=c>0, x_{n+1}=\sqrt{c^{2}+x_{n}};
(iii) x_{1}=c>0, x_{n+1}=\frac{c x_{n}}{n+1} ; hence deduce that \lim _{n \rightarrow \infty} \frac{c^{n}}{n !}=0.
[Hint: Show that the sequences are monotone and bounded in E^{1} (Theorem 3).
For example, in (ii) induction yields
x_{n}<x_{n+1}<c+1 . \quad(\text { Verify! })
Thus \lim x_{n}=\lim x_{n+1}=p exists. To find p, square the equation
x_{n+1}=\sqrt{c^{2}+x_{n}} \quad(\text { given })
and use Theorem 1 to get
p^{2}=c^{2}+p . \quad(\mathrm{Why?})
Solving for p (noting that p>0 ), obtain
p=\lim x_{n}=\frac{1}{2}\left(1+\sqrt{4 c^{2}+1}\right);
similarly in cases (i) and (iii). ]

Exercise \PageIndex{25}

Find \lim x_{n} in E^{1} or E^{*} (if any), given that
(a) x_{n}=(n+1)^{q}-n^{q}, 0<q<1;
(b) x_{n}=\sqrt{n}(\sqrt{n+1}-\sqrt{n});
(c) x_{n}=\frac{1}{\sqrt{n^{2}+k}};
(d) x_{n}=n(n+1) c^{n}, with |c|<1;
(e) x_{n}=\sqrt[n]{\sum_{k=1}^{m} a_{k}^{n}}, with a_{k}>0;
(f) x_{n}=\frac{3 \cdot 5 \cdot 7 \cdots(2 n+1)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}.
[Hints:
(a) 0<x_{n}=n^{q}\left[\left(1+\frac{1}{n}\right)^{q}-1\right]<n^{q}\left(1+\frac{1}{n}-1\right)=n^{q-1} \rightarrow 0 .(\mathrm{Why} ?)
(b) x_{n}=\frac{1}{1+\sqrt{1+1 / n}}, where 1<\sqrt{1+\frac{1}{n}}<1+\frac{1}{n} \rightarrow 1, so x_{n} \rightarrow \frac{1}{2} . (Why?)
(c) Verify that
\frac{n}{\sqrt{n^{2}+n}} \leq x_{n} \leq \frac{n}{\sqrt{n^{2}+1}},
so x_{n} \rightarrow 1 by Corollary 3. (Give a proof.)
(d) See Problems 17 and 18.
(e) Let a=\max \left(a_{1}, \ldots, a_{m}\right) . Prove that a \leq x_{n} \leq a \sqrt[n]{m} . Use Problem 20 . ]
The following are some harder but useful problems of theoretical importance.
The explicit hints should make them not too hard.

Exercise \PageIndex{26}

Let \left\{x_{n}\right\} \subseteq E^{1} . Prove that if x_{n} \rightarrow p in E^{1}, then also
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} x_{i}=p
(i.e., p is also the limit of the sequence of the arithmetic means of the x_{n} ).
[Solution: Fix \varepsilon>0 . Then
(\exists k)(\forall n>k) \quad p-\frac{\varepsilon}{4}<x_{n}<p+\frac{\varepsilon}{4}.
Adding n-k inequalities, get
(n-k)\left(p-\frac{\varepsilon}{4}\right)<\sum_{i=k+1}^{n} x_{i}<(n-k)\left(p+\frac{\varepsilon}{4}\right).
With k so fixed, we thus have
(\forall n>k) \quad \frac{n-k}{n}\left(p-\frac{\varepsilon}{4}\right)<\frac{1}{n}\left(x_{k+1}+\cdots+x_{n}\right)<\frac{n-k}{n}\left(p+\frac{\varepsilon}{4}\right).
Here, with k and \varepsilon fixed,
\lim _{n \rightarrow \infty} \frac{n-k}{n}\left(p-\frac{\varepsilon}{4}\right)=p-\frac{\varepsilon}{4}.
Hence, as p-\frac{1}{2} \varepsilon<p-\frac{1}{4} \varepsilon, there is k^{\prime} such that
\left(\forall n>k^{\prime}\right) \quad p-\frac{\varepsilon}{2}<\frac{n-k}{n}\left(p-\frac{\varepsilon}{4}\right).
Similarly,
\left(\exists k^{\prime \prime}\right)\left(\forall n>k^{\prime \prime}\right) \quad \frac{n-k}{n}\left(p+\frac{\varepsilon}{4}\right)<p+\frac{\varepsilon}{2}.
Combining this with (i), we have, for K^{\prime}=\max \left(k, k^{\prime}, k^{\prime \prime}\right),
\left(\forall n>K^{\prime}\right) \quad p-\frac{\varepsilon}{2}<\frac{1}{n}\left(x_{k+1}+\cdots+x_{n}\right)<p+\frac{\varepsilon}{2}.
Now with k fixed,
\lim _{n \rightarrow \infty} \frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{k}\right)=0.
Hence
\left(\exists K^{\prime \prime}\right)\left(\forall n>K^{\prime \prime}\right) \quad-\frac{\varepsilon}{2}<\frac{1}{n}\left(x_{1}+\cdots+x_{k}\right)<\frac{\varepsilon}{2}.
Let K=\max \left(K^{\prime}, K^{\prime \prime}\right) . Then combining with (ii), we have
(\forall n>K) \quad p-\varepsilon<\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)<p+\varepsilon,
and the result follows.

Exercise \PageIndex{26'}

Show that the result of Problem 26 holds also for infinite limits p=\pm \infty \in E^{*} .

Exercise \PageIndex{27}

Prove that if x_{n} \rightarrow p in E^{*}\left(x_{n}>0\right), then
\lim _{n \rightarrow \infty} \sqrt[n]{x_{1} x_{2} \cdots x_{n}}=p.
[Hint: Let first 0<p<+\infty . Given \varepsilon>0, use density to fix \delta>1 so close to 1 that
p-\varepsilon<\frac{p}{\delta}<p<p \delta<p+\varepsilon.
As x_{n} \rightarrow p,
(\exists k)(\forall n>k) \quad \frac{p}{\sqrt[4]{\delta}}<x_{n}<p \sqrt[4] \delta.
Continue as in Problem 26, replacing \varepsilon by \delta, and multiplication by addition (also subtraction by division, etc., as shown above). Find a similar solution for the case p=+\infty . Note the result of Problem 20.]

Exercise \PageIndex{28}

Disprove by counterexamples the converse implications in Problems 26 and 27 . For example, consider the sequences
1,-1,1,-1, \dots
and
\frac{1}{2}, 2, \frac{1}{2}, 2, \frac{1}{2}, 2, \ldots

Exercise \PageIndex{29}

Prove the following.
(i) If \left\{x_{n}\right\} \subset E^{1} and \lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=p in E^{*}, then \frac{x_{n}}{n} \rightarrow p.
(ii) If \left\{x_{n}\right\} \subset E^{1}\left(x_{n}>0\right) and if \frac{x_{n+1}}{x_{n}} \rightarrow p \in E^{*}, then \sqrt[n]{x_{n}} \rightarrow p.
Disprove the converse statements by counterexamples.
[Hint: For (\mathrm{i}), let y_{1}=x_{1} and y_{n}=x_{n}-x_{n-1}, n=2,3, \ldots Then y_{n} \rightarrow p and
\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{x_{n}}{n},
so Problems 26 and 26^{\prime} apply.
For (ii), use Problem 27 . See Problem 28 for examples. ]

Exercise \PageIndex{30}

From Problem 29 deduce that
(a) \lim _{n \rightarrow \infty} \sqrt[n]{n !}=+\infty;
(b) \lim _{n \rightarrow \infty} \frac{n+1}{n !}=0;
(c) \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{n !}}=e;
(d) \lim _{n \rightarrow \infty} \frac{1}{n} \sqrt[n]{n !}=\frac{1}{e};
(e) \lim _{n \rightarrow \infty} \sqrt[n]{n}=1.

Exercise \PageIndex{31}

Prove that
\lim _{n \rightarrow \infty} x_{n}=\frac{a+2 b}{3},
given
x_{0}=a, x_{1}=b, \text { and } x_{n+2}=\frac{1}{2}\left(x_{n}+x_{n+1}\right).
[Hint: Show that the differences d n=x_{n}-x_{n-1} form a geometric sequence, with ratio q=-\frac{1}{2}, and x_{n}=a+\sum_{k=1}^{n} d_{k} . Then use the result of Problem 19 . ]

Exercise \PageIndex{32}

\Rightarrow 32 . For any sequence \left\{x_{n}\right\} \subseteq E^{1}, prove that
\underline{\lim} x_{n} \leq \underline{\lim} \frac{1}{n} \sum_{i = 1}^{n} x_{i} \leq \overline{\lim} \frac{1}{n} \sum_{i = 1}^{n} x_{i} \leq \overline{\lim} x_{n} .
Hence find a new solution of Problems 26 and 26^{\prime} .
[Proof for \overline{\lim}: Fix any k \in N . Put
c=\sum_{i=1}^{k} x_{i} \text { and } b=\sup _{i \geq k} x_{i}.
Verify that
(\forall n>k) \quad x_{k+1}+x_{k+2}+\cdots+x_{n} \leq(n-k) b.
Add c on both sides and divide by n to get
(\forall n>k) \quad \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \frac{c}{n}+\frac{n-k}{n} b.
Now fix any \varepsilon>0, and first let |b|<+\infty . As \frac{c}{n} \rightarrow 0 and \frac{n-k}{n} b \rightarrow b, there is n_{k}>k such that
\left(\forall n>n_{k}\right) \quad \frac{c}{n}<\frac{\varepsilon}{2} \text { and } \frac{n-k}{n} b<b+\frac{\varepsilon}{2}.
Thus by \left(\mathrm{i}^{*}\right),
\left(\forall n>n_{k}\right) \quad \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \varepsilon+b.
This clearly holds also if b=\sup _{i \geq k} x_{i}=+\infty . Hence also
\sup _{n \geq n_{k}} \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \varepsilon+\sup _{i \geq k} x_{i}.
As k and \varepsilon were arbitrary, we may let first k \rightarrow+\infty, then \varepsilon \rightarrow 0, to obtain
\underline{\lim} \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \lim _{k \rightarrow \infty} \sup _{i \geq k} x_{i}=\overline{\lim } x_{n} . \quad(\text { Explain! }) ]

Exercise \PageIndex{33}

\Rightarrow 33 . Given \left\{x_{n}\right\} \subseteq E^{1}, x_{n}>0, prove that
\underline{\lim} x_{n} \leq \underline{\lim} \sqrt[n]{x_{1} x_{2} \cdots x_{n}} \text{ and } \overline{\lim} \sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \overline{\lim} x_{n} .
Hence obtain a new solution for Problem 27 .
[Hint: Proceed as suggested in Problem 32, replacing addition by multiplication.]

Exercise \PageIndex{34}

Given x_{n}, y_{n} \in E^{1}\left(y_{n}>0\right), with
x_{n} \rightarrow p \in E^{*} \text { and } b_{n}=\sum_{i=1}^{n} y_{i} \rightarrow+\infty,
prove that
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} y_{i}}=p.
Note that Problem 26 is a special case of Problem 34 (take all y_{n}=1 ). [Hint for a finite p : Proceed as in Problem 26 . However, before adding the n-k inequalities, multiply by y_{i} and obtain
\left(p-\frac{\varepsilon}{4}\right) \sum_{i=k+1}^{n} y_{i}<\sum_{i=k+1}^{n} x_{i} y_{i}<\left(p+\frac{\varepsilon}{4}\right) \sum_{i=k+1}^{n} y_{i}.
\operatorname{Put} b_{n}=\sum_{i=1}^{n} y_{i} and show that
\frac{1}{b_{n}} \sum_{i=k+1}^{n} x_{i} y_{i}=1-\frac{1}{b_{n}} \sum_{i=1}^{k} x_{i} y_{i},
where b_{n} \rightarrow+\infty(\text { by assumption }), so
\frac{1}{b_{n}} \sum_{i=1}^{k} x_{i} y_{i} \rightarrow 0 \quad \text { (for a fixed } k ).
Proceed. Find a proof for p=\pm \infty . ]

Exercise \PageIndex{35}

Do Problem 34 by considering \underline{\lim} and \overline{\lim} as in Problem 32.
\left[\text { Hint: Replace } \frac{c}{n} \text { by } \frac{c}{b_{n}}, \text { where } b_{n}=\sum_{i=1}^{n} y_{i} \rightarrow+\infty .\right]

Exercise \PageIndex{36}

Prove that if u_{n}, v_{n} \in E^{1}, with \left\{v_{n}\right\} \uparrow (strictly) and v_{n} \rightarrow+\infty, and if
\lim _{n \rightarrow \infty} \frac{u_{n}-u_{n-1}}{v_{n}-v_{n-1}}=p \quad\left(p \in E^{*}\right),
then also
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=p,
[Hint: The result of Problem 34, with
x_{n}=\frac{u_{n}-u_{n-1}}{v_{n}-v_{n-1}} \text { and } y_{n}=v_{n}-v_{n-1}.
leads to the final result. ]

Exercise \PageIndex{37}

From Problem 36 obtain a new solution for Problem 15 . Also prove that
\lim _{n \rightarrow \infty}\left(\frac{S_{m n}}{n^{m+1}}-\frac{1}{m+1}\right)=\frac{1}{2}.
[Hint: For the first part, put
u_{n}=S_{m n} \text { and } v_{n}=n^{m+1}.
For the second, put
u_{n}=(m+1) S_{m n}-n^{m+1} \text { and } v_{n}=n^{m}(m+1) . ]

Exercise \PageIndex{38}

Let 0<a<b<+\infty . Define inductively: a_{1}=\sqrt{a b} and b_{1}=\frac{1}{2}(a+b);
a_{n+1}=\sqrt{a_{n} b_{n}} \text { and } b_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right), n=1,2, \ldots
Then a_{n+1}<b_{n+1} for
b_{n+1}-a_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right)-\sqrt{a_{n} b_{n}}=\frac{1}{2}\left(\sqrt{b_{n}}-\sqrt{a_{n}}\right)^{2}>0.
Deduce that
a<a_{n}<a_{n+1}<b_{n+1}<b_{n}<b,
so \left\{a_{n}\right\} \uparrow and \left\{b_{n}\right\} \downarrow . By Theorem 3, a_{n} \rightarrow p and b_{n} \rightarrow q for some p, q \in E^{1} . Prove that p=q, i.e.,
\lim a_{n}=\lim b_{n}.
(This is Gauss's arithmetic-geometric mean of a and b . )
[Hint: Take limits of both sides in b_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right) to get q=\frac{1}{2}(p+q) . ]

Exercise \PageIndex{39}

Let 0<a<b in E^{1} . Define inductively a_{1}=a, b_{1}=b,
a_{n+1}=\frac{2 a_{n} b_{n}}{a_{n}+b_{n}}, \text { and } b_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right), \quad n=1,2, \ldots
Prove that
\sqrt{a b}=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}.
[Hint: Proceed as in Problem 38.]

Exercise \PageIndex{40}

Prove the continuity of dot multiplication, namely, if
\overline{x}_{n} \rightarrow \overline{q} \text { and } \overline{y}_{n} \rightarrow \overline{r} \text { in } E^{n}
(*or in another Euclidean space; see §9), then
\overline{x}_{n} \cdot \overline{y}_{n} \rightarrow \overline{q} \cdot \overline{r}.


3.11.E: Problems on Limits of Sequences (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?