Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3.2: Parametrized curves

  • Page ID
    6489
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    We often use the Greek letter gamma for a parameterized curve, i.e.

    \[\gamma (t) = (x(t), y(t)). \nonumber\]

    We think of this as a moving point tracing out a curve in the plane. The tangent vector

    \[\gamma '(t) = (x'(t), y'(t)) \nonumber\]

    is tangent to the curve at the point \((x (t), y(t))\). It's length \(|\gamma '(t)|\) is the instantaneous speed of the moving point.

    001 - (3.3 - Parametrized curve).svg
    Figure \(\PageIndex{1}\): Parametrized curve \(\gamma (t)\) with some tangent vectors \(\gamma '(t)\). (CC BY-NC; Ümit Kaya)

    Example \(\PageIndex{1}\)

    Parametrize the straight line from the point \((x_0, y_0)\) to \((x_1, y_1)\).

    Solution

    There are always many parametrizations of a given curve. A standard one for straight lines is

    \[\gamma (t) = (x, y) = (x_0, y_0) + t(x_1 - x_0, y_1 - y_0), \text{ with } 0 \le t \le 1. \nonumber\]

    Example \(\PageIndex{2}\)

    Parametrize the circle of radius \(r\) around the point \((x_0, y_0)\).

    Solution

    Again there are many parametrizations. Here is the standard one with the circle traversed in the counterclockwise direction:

    \[\gamma (t) = (x, y) = (x_0, y_0) + r(\cos (t), \sin (t)), \text{ with } 0 \le t \le 2\pi. \nonumber\]

    002 - (3.3- circle).svg
    Figure \(\PageIndex{2}\): Line from \((x_0, y_0)\) to (\(x_1, y_1\)) and circle around \((x_0, y_0)\). (CC BY-NC; Ümit Kaya)
    • Was this article helpful?