Skip to main content
Mathematics LibreTexts

3.3.E: Problems on Intervals in Eⁿ (Exercises)

  • Page ID
    22261
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    (Here \(A\) and \(B\) denote intervals.)

    Exercise \(\PageIndex{1}\)

    Prove Corollaries 1-3.

    Exercise \(\PageIndex{2}\)

    Prove that if \(A \subseteq B,\) then \(d A \leq d B\) and \(v A \leq v B\).

    Exercise \(\PageIndex{3}\)

    Give an appropriate definition of a "face" and a "vertex" of \(A\).

    Exercise \(\PageIndex{4}\)

    Find the edge-lengths of \(A=(\overline{a}, \overline{b})\) in \(E^{4}\) if
    \[
    \overline{a}=(1,-2,4,0) \text { and } \overline{b}=(2,0,5,3).
    \]
    Is \(A\) a cube? Find some rational points in it. Find \(d A\) and \(v A\).

    Exercise \(\PageIndex{5}\)

    Show that the sets \(P\) and \(Q\) as defined in footnote 1 are intervals, indeed. In particular, they can be made half-open (half-closed) if \(A\) is half-open (half-closed).
    \([\text { Hint: Let } A=(\overline{a}, \overline{b}]\),
    \[
    P=\left\{\overline{x} \in A | x_{k} \leq c\right\}, \text { and } Q=\left\{\overline{x} \in A | x_{k}>c\right\}.
    \]
    To fix ideas, let \(k=1,\) i.e., cut the first edge. Then let
    \[
    \overline{p}=\left(c, a_{2}, \ldots, a_{n}\right) \text { and } \overline{q}=\left(c, b_{2}, \ldots, b_{n}\right) \text { (see Figure } 2 ),
    \]
    and verify that \(P=(\overline{a}, \overline{q}]\) and \(Q=(\overline{p}, \overline{b}] .\) Give a proof. \(]\)

    Exercise \(\PageIndex{6}\)

    In Problem \(5,\) assume that \(A\) is closed, and make \(Q\) closed. (Prove it!)

    Exercise \(\PageIndex{7}\)

    In Problem 5 show that \((\text { with } k \text { fixed })\) the \(k\) th edge-lengths of \(P\) and \(Q\) equal \(c-a_{k}\) and \(b_{k}-c,\) respectively, while for \(i \neq k\) the edge-length \(\ell_{i}\) is the same in \(A, P,\) and \(Q,\) namely, \(\ell_{i}=b_{i}-a_{i}\).
    [Hint: If \(k=1,\) define \(\overline{p}\) and \(\overline{q}\) as in Problem \(5 . ]\)

    Exercise \(\PageIndex{8}\)

    Prove that if an interval \(A\) is split into subintervals \(P\) and \(Q(P \cap Q=\emptyset)\), then \(v A=v P+v Q .\)
    [Hint: Use Problem 7 to compute \(v A, v P,\) and \(v Q .\) Add up. \(]\)
    Give an example. (Take \(A\) as in Problem 4 and split it by the plane \(x_{4}=1 . )\)

    Exercise \(\PageIndex{9}\)

    *9. Prove the additivity of the volume of intervals, namely, if \(A\) is subdivided, in any manner, into \(m\) mutually disjoint subintervals \(A_{1}, A_{2}, \ldots, A_{m}\) \(i n E^{n},\) then
    \[
    v A=\sum_{i=1}^{m} v A_{i}.
    \]
    (This is true also if some \(A_{i}\) contain common faces).
    [Proof outline: For \(m=2,\) use Problem 8.
    Then by induction, suppose additivity holds for any number of intervals smaller than a certain \(m\) \((m>1) .\) Now let
    \[
    A=\bigcup_{i=1}^{m} A_{i} \quad\left(A_{i} \text { disjoint }\right).
    \]
    One of the \(A_{i}\) (say, \(A_{1}=[\overline{a}, \overline{p}] )\) must have some edge-length smaller than the corresponding edge-length of \(A\left(\operatorname{say}, \ell_{1}\right) .\) Now cut all of \(A\) into \(P=[\overline{a}, \overline{d}]\) and \(Q=A-P(\text { Figure } 4)\) by the plane \(x_{1}=c\left(c=p_{1}\right)\) so that \(A_{1} \subseteq P\) while \(A_{2} \subseteq Q .\) For simplicity, assume that the plane cuts each \(A_{i}\) into two subintervals \(A_{i}^{\prime}\) and \(A_{i}^{\prime \prime} .\) (One of them may be empty.)
    Then
    \[
    P=\bigcup_{i=1}^{m} A_{i}^{\prime} \text { and } Q=\bigcup_{i=1}^{m} A_{i}^{\prime \prime}.
    \]
    Actually, however, \(P\) and \(Q\) are split into fewer than \(m\) (nonempty) intervals since \(A_{1}^{\prime \prime}=\emptyset=A_{2}^{\prime}\) by construction. Thus, by our inductive assumption,
    \[
    v P=\sum_{i=1}^{m} v A_{i}^{\prime} \text { and } v Q=\sum_{i=1}^{m} v A_{i}^{\prime \prime},
    \]
    where \(v A_{1}^{\prime \prime}=0=v A_{2}^{\prime},\) and \(v A_{i}=v A_{i}^{\prime}+v A_{i}^{\prime \prime}\) by Problem \(8 .\) Complete the inductive proof by showing that
    \[
    v A=v P+v Q=\sum_{i=1}^{m} v A_{i} .]
    \]


    3.3.E: Problems on Intervals in Eⁿ (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?