Skip to main content
Mathematics LibreTexts

4.3: The Chain Rule

  • Page ID
    83933
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In the last two sections we learned rules to symbolically differentiate some functions. To summarize, we have established some elementary formulas and some arithmetic rules.

    Elementary Formulas:

    If \(f(x)=a\text{,}\) then \(f'(x)=0\text{.}\)

    If \(f(x)=ax\text{,}\) then \(f'(x)=a\text{.}\)

    If \(f(x)=a*x^n\text{,}\) then \(f(x)=a*n*x^{n-1}\text{,}\) for any nonzero number n.

    If \(f(x)=e^x\text{,}\) then \(f'(x)=e^x\text{.}\)

    If \(f(x)=a^x\text{,}\) then \(f'(x)=a^x \ln(a)\text{.}\)

    If \(f(x)=\ln(x)\text{,}\) then \(f'(x)=1/x\)

    Arithmetic derivative rules:

    Scalar multiple rule: The derivative of \(c*f(x)\) is \(c*f'(x)\text{.}\)

    Sum and difference rule: The derivative of \(f(x)\pm g(x)\) is \(f'(x)\pm g'(x)\text{.}\)

    Product Rule: The derivative of \(f(x)g(x)\) is \(f' (x) g(x)+f(x)g'(x)\text{.}\)

    Quotient Rule: The derivative of \(f(x)/g(x)\) is \(\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2} \text{.}\)

    The other way we traditionally build functions from simpler functions is by use of composition. We want to be able to take derivatives of functions like \((2x+3)^{52}\text{,}\) \(\sqrt{(x^2 )+5x+7}\text{,}\) and \(1.06^{.2x}\text{.}\)

    Claim \(4.3.1\). Chain Rule.

    The derivative of \(f(g(x))\) is \(f'(g(x))g'(x)\) In other words,

    \[ \left[f(g(x))\right]'=f'(g(x))*g'(x)\text{.} \nonumber \]

    Example 4.3.2: Simple Chain Rule.

    Find the derivative of the following functions:

    1. \(\displaystyle f(p)=(p^3+2 p+5)^7.\)
    2. \(\displaystyle g(q)=\sqrt{q^2+6}.\)
    3. \(\displaystyle h(x)=e^{2 x+5}.\)

    Solution

    1. We could do this problem by expanding it to a polynomial and using rules from the previous section, but that is much too hard. We can write \(f(p)\) as \(g(h(p))\) where \(h(p)=p^3+2 p+5\) and \(g(p)=p^7\text{.}\) We use the rules from the previous section to compute \(h'(p)=3 p^2+2\) and \(g'(p)=7p^6\text{.}\) Composing we get \(g'(h(p))=7(p^3+2 p+5)^6\text{.}\) Thus

      \[ f'(p)=g'(h(p))h'(p)=7(p^3+2 p+5)^6(3 p^2+2 ). \nonumber \]


    This page titled 4.3: The Chain Rule is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mike May, S.J. & Anneke Bart via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.