12.10: Chapter 10 Exercise Solutions
- Page ID
- 60004
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Chapter 10: Probability
1. a. \(\dfrac{6}{13}\)
b. \(\dfrac{2}{13}\)
3. \(\dfrac{150}{335} = 44.8 \%\)
5. \(\dfrac{1}{6}\)
7. \(\dfrac{26}{65}\)
9. \(\dfrac{3}{6} = \dfrac{1}{2} \)
11. \(\dfrac{4}{52} = \dfrac{1}{4}\)
13. \(1 - \dfrac{1}{12} = \dfrac{11}{12}\)
15. \(1 - \dfrac{25}{65} = \dfrac{40}{65}\)
17. \(\dfrac{1}{6} \cdot \dfrac{1}{6} = \dfrac{1}{36}\)
19. \(\dfrac{1}{6} \cdot \dfrac{3}{6} = \dfrac{3}{36} = \dfrac{1}{12} \)
21. \(\dfrac{17}{49} \cdot \dfrac{16}{48} = \dfrac{17}{49} \cdot \dfrac{1}{3} = \dfrac{17}{147} \)
23. a. \(\dfrac{4}{52} \cdot \dfrac{4}{52} = \dfrac{16}{2704} = \dfrac{1}{169} \)
b. \(\dfrac{4}{52} \cdot \dfrac{48}{52} = \dfrac{192}{2704} = \dfrac{12}{169} \)
c. \(\dfrac{48}{52} \cdot \dfrac{48}{52} = \dfrac{2304}{2704} = \dfrac{144}{169} \)
d. \(\dfrac{13}{52} \cdot \dfrac{13}{52} = \dfrac{169}{2704} = \dfrac{1}{16} \)
e. \(\dfrac{48}{52} \cdot \dfrac{39}{52} = \dfrac{1872}{2704} = \dfrac{117}{169} \)
25. \(\dfrac{4}{52} \cdot \dfrac{4}{51} = \dfrac{16}{2652}\)
27. a. \(\dfrac{11}{25} \cdot \dfrac{14}{24} = \dfrac{154}{600}\)
b. \(\dfrac{14}{25} \cdot \dfrac{11}{24} = \dfrac{154}{600}\)
c. \(\dfrac{11}{25} \cdot \dfrac{10}{24} = \dfrac{110}{600}\)
d. \(\dfrac{14}{25} \cdot \dfrac{13}{24} = \dfrac{182}{600}\)
e. no males = two females. Same as part d.
29. \(P(\text{F} \text{ and } \text{A}) = \dfrac{10}{65} \)
31. \(P(\text{red} \text{ or } \text{odd}) = \dfrac{6}{14} + \dfrac{7}{14} - \dfrac{3}{14} = \dfrac{10}{14} \). Or \(6\) red and \(4\) odd-numbered blue marbles is \(10\) out of \(14\).
33. \(P(\text{F} \text{ or } \text{B}) = \dfrac{26}{65} + \dfrac{22}{65} - \dfrac{4}{65} = \dfrac{44}{65}\). Or \(P(\text{F} \text{ or } \text{B}) = \dfrac{18+4+10+12}{65} = \dfrac{44}{65} \)
35. \(P(\text{King of Hearts or Queen}) = \dfrac{1}{52} + \dfrac{4}{52} = \dfrac{5}{52} \)
37. a. \(P(\text{even} | \text{red}) = \dfrac{2}{5} \)
b. \(P(\text{even} | \text{red}) = \dfrac{2}{6} \)
39. \(P(\text{Heads on second} | \text{Tails on first}) = \dfrac{1}{2}\). They are independent events.
41. \(P(\text{speak French} | \text{female}) = \dfrac{3}{14}\)
43. Out of \(4,000\) people, \(10\) would have the disease. Out of those \(10\), \(9\) would test positive, while \(1\) would falsely test negative. Out of the \(3990\) uninfected people, \(399\) would falsely test positive, while \(3591\) would test negative.
a. \(P(\text{virus} | \text{positive}) = \dfrac{9}{9 + 399} = \dfrac{9}{408} = 2.2 \%\)
b. \(P(\text{no virus} | \text{negative}) = \dfrac{3591}{3591 + 1} = \dfrac{3591}{3592} = 99.97 \%\)
45. Out of \(100,000\) people, \(300\) would have the disease. Of those, \(18\) would falsely test negative, while \(282\) would test positive. Of the \(99,700\) without the disease, \(3,988\) would falsely test positive and the other \(95,712\) would test negative. \(P(\text{disease} | \text{positive}) = \dfrac{282}{282 + 3988} = \dfrac{720}{7664} = 6.6 \%\)
47. Out of \(100,000\) women, \(800\) would have breast cancer. Out of those, \(80\) would falsely test negative, while \(720\) would test positive. Of the \(99,200\) without cancer, \(6,944\) would falsely test positive. \(P(\text{cancer} | \text{positive}) = \dfrac{720}{720 + 6944} = \dfrac{720}{7664} = 9.4 \%\)
49. \(2 \cdot 3 \cdot 8 \cdot 2 = 96\) outfits
51. a. \(4 \cdot 4 \cdot 4 = 64\)
b. \(4 \cdot 3 \cdot 2 = 24\)
53. \(26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 = 17,576,000\)
55. \(_4P_4 \text{ or } 4 \cdot 3 \cdot 2 \cdot 1 = 24\) possible orders
57. Order matters. \(_7P_4 = 840\) possible teams
59. Order matters. \(_{12}P_5 = 95,040\) possible themes
61. Order does not matter. \(_{12}C_4 = 495\)
63. \(_{50}C_6 = 15,890,700\)
65. \(_{27}C_{11} \cdot 16 = 208,606,320\)
67. There is only \(1\) way to arrange \(5\) CD's in alphabetical order. The probability that the CD's are in alphabetical order is one divided by the total number of ways to arrange \(5\) CD's. Since alphabetical order is only one of all the possible orderings you can either use permutations, or simply use \(5!\). \(P(\text{alphabetical}) = \dfrac{1}{5!} = \dfrac{1}{(_5P_5)} = \dfrac{1}{120}\).
69. There are \(_{48}C_6\) total tickets. To match \(5\) of the \(6\), a player would need to choose \(5\) of those \(6\), \(_6C_5\), and one of the \(42\) non-winning numbers, \(_{42}C_1\). \(\dfrac{6 \cdot 42}{12271512} = \dfrac{252}{12271512}\)
71. All possible hands is \(_{52}C_5\). Hands will all hearts is \(_{13}C_5\). \(\dfrac{1287}{2598960}\).
73. \( $3 \left(\dfrac{3}{37} \right) + $2 \left(\dfrac{6}{37} \right) + (-$1) \left(\dfrac{3}{37} \right) = -$ \dfrac{7}{37} + = -$0.19\)
75. There are \(_{23}C_6 = 100,947\) possible tickets.
Expected value = \($29,999 \left(\dfrac{1}{100947} \right) + (-$1) \left(\dfrac{100946}{100947} \right) = -$0.70\)
77. \($48 (0.993) + (−$302)(0.007) = $45.55\)