Skip to main content
Mathematics LibreTexts

2.3: Magnitude, Direction, and Components of a Vector

  • Page ID
    125030

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Magnitude of a Vector

    It is productive to represent the horizontal and vertical components of a vector \(\vec{v}\) as \(v_x\) and \(v_y\), respectively.

    Definition: Magnitude (the length) of a vector

    A diagram showing the magnitude of a vector and its horizontal and vertical components. v_x (v subscript x) is pointing horizontally and v_y (v subscript y) is pointing vertically. The terminal point of v_x is connected to the starting point of v_y. The starting point of vector v is connected to the starting point of v_x. The terminal point of vector v is connected to the terminal point of v_y.

    The magnitude (the length) of a vector \(\vec{v}=\left\langle v_x, v_y\right\rangle\) is \[\|\vec{v}\|=\sqrt{v_x^2+v_y^2} \nonumber \]

    Example \(\PageIndex{1}\)

    Magnitude of vector \(\vec{v}=\left\langle 5,\left.-8\right\rangle \right.\):

    An example of a vector magnitude in a 2-dimension coordinate system. The starting point of vector v is (0,0) and the terminal point is (5,negative 8). The magnitude of vector v is square root of 89.

    Solution

    The vector \(\vec{v}=\left\langle 5,\left.-8\right\rangle \right.\) has magnitude:

    \(\left\|\overrightarrow{v}\right\|=\sqrt{{v_x}^2+{v_y}^2}\)= \(\sqrt{5^2+{\left(-8\right)}^2}=\ \sqrt{25+64}\) = \(\sqrt{89}\)

    Interpret this as the length of the vector \(\overrightarrow{v}=\left\langle 5,\left.-8\right\rangle \right.\) is \(\sqrt{89}\) units.

    The Direction of a Vector

    The direction of a vector \(\vec{v}\) is the angle the vector makes with the positive x-axis.

    It is typically represented with the uppercase Greek letter theta \(\theta\). We use some trigonometry to determine the angle \(\theta\).

    Image illustrating a direction of a vector and the angle it makes with the positive x-axis. Vector v is theta degrees away from the x-axis. The y-axis is 90 degrees away from the x-axis. Vector v is 90-theta degrees away from the y-axis.

    \(\tan \theta=\dfrac{y}{x}\) or \(\theta=\tan ^{-1} \dfrac{y}{x}\)

    The angle \(\theta \) is always between \(0^{\circ}\) and \(360^{\circ}\).

    Example \(\PageIndex{2}\)

    To approximate the direction of the vector \(\vec{v}=\langle 5,8\rangle\), use \(\theta=\tan ^{-1} \frac{y}{x}\), with \(x=5\) and \(y=8\).

    Image illustrating direction of the vector and the angle it makes. The starting point of vector v is (0,0) and the ending point is (5,8). Vector v is also theta degrees away from the x-axis.

    Solution

    \(\begin{aligned}
    \vec{v} & =\langle 5,8\rangle \\
    \theta & =\tan ^{-1} \frac{y}{x} \\
    \theta & =\tan ^{-1} \frac{8}{5}
    \end{aligned}\)

    Using a calculator, we get

    \(\begin{aligned}
    & \theta=57.99^{\circ} \\
    & \theta=58^{\circ}
    \end{aligned}\)

    Example \(\PageIndex{3}\)

    To approximate the direction of the vector \(\vec{v}=\langle 5,-8\rangle\), use \(\theta=\tan ^{-1} \frac{y}{x}\), with \(x=5\) and \(y=-8\).

    Image illustrating direction of the vector and the angle it makes. The starting point of vector v is (0,0) and the terminal point is (5,negative 8). the vector is theta degrees away from the x-axis in the counter-clockwise direction.

    Solution

    \(\begin{gathered}
    \vec{v}=\langle 5,-8\rangle \\
    \theta=\tan ^{-1} \frac{y}{x} \\
    \theta=\tan ^{-1} \frac{-8}{5}
    \end{gathered}\)

    Using a calculator, we get

    \(\theta=-57.99^{\circ}\)

    Vertical component is in Quadrant IV and \(\theta\) must be in the interval \(\left[0,\left.360\right)\right.\), therefore we calculate \(\theta\) by

    \[\theta =360{}^\circ -57.99{}^\circ =302.005{}^\circ\nonumber \] \[\theta =302{}^\circ \nonumber \]

    The Components of a Vector

    The lengths of the \(x\)- and \(y\)- components of a vector \(\left\|\vec{v}\right\|=\sqrt{{v_x}^2+{v_y}^2}\) in two dimensions can be found using trigonometric ratios.

    \(\vec{v}_x=\|\vec{v}\|_{\cos \theta}\)and \(\vec{v}_y=\|\vec{v}\|_{\sin \theta}\)

    \(\vec{v}_x\) is the horizontal component of \(\vec{v}\) and \(\vec{v}_y\) is the vertical component.

    The angle \(\theta\) is always between \(0^{\circ}\) and \(360^{\circ}\).

    Suppose the magnitude of a vector \(\vec{v}\boldsymbol{=}\left\langle v_x,\left.v_y\right\rangle \right.\) is 20 units, and that \(\vec{v}\) makes a 60\(\mathrm{{}^\circ}\) angle with the horizontal. Then, the components of \(\vec{v}\) are

    \[\begin{aligned}
    \vec{v}_x & =\|\vec{v}\| \cos \theta \\
    = & 20 \cos 60^{\circ} \\
    & =20 \cdot \frac{1}{2} \\
    & =10
    \end{aligned} \nonumber \]

    and

    \[\begin{aligned}
    \vec{v}_y & =\|\vec{v}\|_{\sin } \theta \\
    = & 20 \sin 60^{\circ} \\
    & =20 \cdot \frac{\sqrt{3}}{2} \\
    & =10 \sqrt{3}
    \end{aligned} \nonumber \]

    A diagram showing the magnitude of a vector and its horizontal and vertical components with the angle it creates. Vector v is 60 degrees away from the purple horizontal vector. The starting points of vector v and the purple horizontal vector are connected together. The terminal points of vector v and the purple vertical vector are connected together. The terminal point of the horizontal vector is connected to the starting point of the vertical vector.

    So, we could write \(\vec{v}\boldsymbol{=}\left\langle v_x,\left.v_y\right\rangle \right.\) as \(\vec{v}\boldsymbol{=}\left\langle 10,\left.10\sqrt{3}\right\rangle \right.\)

    Using Technology

    We can use technology to determine the magnitude of a vector.

    Go to www.wolframalpha.com.

    To find the magnitude of the vector \(\vec{v}\boldsymbol{=}\left\langle 2,\left.4\right\rangle ,\right.\) enter magnitude of the vector \(\mathrm{<}\)2,4\(\mathrm{>}\) in the entry field. Wolframalpha tells you what it thinks you entered, then tells you its answer. In this case, \(\left\|\vec{v}\right\|=2\sqrt{5}\).

    This screenshot from WolframAlpha shows us the magnitude of the vector v = <2,4. The result is 2 times the square root of 5." src="/@api/deki/files/97361/clipboard_e757f835523c600e69c47a6190429dff2.png">

    To find the direction of the vector \(\vec{v}\boldsymbol{=}\left\langle 5,\left.8\right\rangle ,\right.\) enter direction of the vector \(\mathrm{<}\)5,8\(\mathrm{>}\) in the entry field. Wolframalpha answers \(57.9946{}^\circ \approx 58{}^\circ\).

    This screenshot from WolframAlpha shows a calculation for the direction of the vector v = <2,4. The result is 9.43398 radians (r) and 57.9946 degrees from the x-axis (theta)." src="/@api/deki/files/97362/clipboard_e0ddb516d9c06e26d0792e439e307323d.png">

    Try These

    Exercise \(\PageIndex{1}\)

    Find the magnitude of the vector \(\vec{v}=\langle 3,-4\rangle\).

    Answer

    \(\left\|\overrightarrow{v}\right\|=5\)

    Exercise \(\PageIndex{2}\)

    Find the magnitude of the vector \(\vec{v}=\langle -3,-3\rangle\).

    Answer

    \(\left\|\overrightarrow{v}\right\|=3\sqrt{2}\)

    Exercise \(\PageIndex{3}\)

    Find the components of the vector \(\vec{v}\) if the magnitude of \(\vec{v}\) is 6 and it makes a \(30^{\circ}\) angle with the horizontal.

    Answer

    \({\overrightarrow{v}}_x=\ 3\sqrt{3}\) and \({\overrightarrow{v}}_y\mathrm{=3}\)

    Exercise \(\PageIndex{4}\)

    Approximate the direction of the vector \(\vec{v}=\langle 3,10\rangle\).

    Answer

    \(\theta \approx 73.3008{}^\circ\)


    This page titled 2.3: Magnitude, Direction, and Components of a Vector is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski (Downey Unified School District) .