Skip to main content
Mathematics LibreTexts

3.4: The Unit Vector in 3-Dimensions and Vectors in Standard Position

  • Page ID
    125038

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Unit Vector in 3-Dimensions

    The unit vector, as you will likely remember, in 2-dimensions is a vector of length 1. A unit vector in the same direction as the vector \(\overrightarrow{v}\) is often denoted with a “hat” on it as in \(\hat{v}\). We call this vector “v hat.”

    Definition: The Unit Vector in 3-Dimensions

    The unit vector \(\hat{v}\) corresponding to the vector \(\hat{v}\) is defined to be \[\hat{v}=\frac{\vec{v}}{\|\vec{v}\|} \nonumber \]

    Example \(\PageIndex{1}\)

    Unit vector corresponding to the vector \(\overrightarrow{v}\boldsymbol{=}\left\langle -8,\left.12\right\rangle \right.\)

    Solution

    The unit vector corresponding to the vector \(\overrightarrow{v}\boldsymbol{=}\left\langle -8,\left.12\right\rangle \right.\) is

    \[\hat{v}=\frac{\overrightarrow{v}}{\left\|\overrightarrow{v}\right\|}\nonumber \]

    \[\begin{gathered}
    \hat{v}=\frac{\langle-8,12\rangle}{\sqrt{(-8)^2+(12)^2}} \\
    \hat{v}=\frac{\langle-8,12\rangle}{\sqrt{64+144}} \\
    \hat{v}=\frac{\langle-8,12\rangle}{\sqrt{208}} \\
    \hat{v}=\left\langle\frac{-8}{\sqrt{208}}, \frac{12}{\sqrt{208}}\right\rangle
    \end{gathered} \nonumber \]

    A unit vector in 3-dimensions and in the same direction as the vector \(\overrightarrow{v}\) is defined in the same way as the unit vector in 2-dimensions.

    The unit vector \(\hat{v}\) corresponding to the vector \(\overrightarrow{v}\) is defined to be \(\hat{v}=\frac{\overrightarrow{v}}{\left\|\overrightarrow{v}\right\|}\), where \(\overrightarrow{v}\boldsymbol{=}\left\langle x,\left.y,\ z\right\rangle \right..\)

    For example, the unit vector corresponding to the vector \(\overrightarrow{v}=\left\langle 5,\left.-3,\ 4\right\rangle \right.\) is

    \[\hat{v}=\frac{\overrightarrow{v}}{\left\|\overrightarrow{v}\right\|} \nonumber \]

    \[\hat{v}=\frac{\left\langle 5,\left.-3,\ 4\right\rangle \right.}{\sqrt{5^2+{\left(-3\right)}^2+4^2}}\nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.-3,\ 4\right\rangle \right.}{\sqrt{25+9+16}}\nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.-3,\ 4\right\rangle \right.}{\sqrt{50}}\nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.-3,\ 4\right\rangle \right.}{5\sqrt{2}}\nonumber \] \[\hat{v}=\left\langle \frac{5}{5\sqrt{2}},\left.\frac{-3}{5\sqrt{2}},\frac{4}{5\sqrt{2}}\right\rangle \right. \nonumber \]

    Vectors in Standard Position

    A vector with its initial point at the origin in a Cartesian coordinate system is said to be in standard position. A common notation for a unit vector in standard position uses the lowercase letters i, j, and k is to represent the unit vector in

    the \(x\)-direction with the vector \(\hat{i}\), where \(\hat{i}=\left\langle 1,\left.0,\ 0\right\rangle \right.\), and

    the \(y\)-direction with the vector \(\hat{j}\), where \(\hat{j}=\left\langle 0,\left.1,\ 0\right\rangle \right.\), and

    the \(z\)-direction with the vector \(\hat{k}\), where \(\hat{k}=\left\langle 0,\left.0,\ 1\right\rangle \right.\).

    The figure shows these three unit vectors.

    A diagram showing three unit vectors in a standard position within a 3-dimensional Cartesian coordinate system. In the xyz plane, we have three unit vectors, i, j and k. All three of these vectors have starting points at (0,0,0). The terminal point of i is (1,0,0), the terminal point of j is (0,1,0), and the terminal point of k is (0,0,1).

    Any vector can be expressed as a combination of these three unit vectors.

    Example \(\PageIndex{2}\)

    The vector \(\overrightarrow{v}=\left\langle 5,\ \left.4,\ 7\right\rangle \right.\) can be expressed as \(\overrightarrow{v}=5\hat{i}+4\hat{j}+7\hat{k}\).

    A diagram showing the direction of a unit vector through an expression. In the xyz plane, we have a vector v where the starting point is (0,0,0) and the terminal point is (5,4,7). The equation of this vector in terms of unit vectors is 5i+4j+4k. There are lines that connect this vector to the x-axis, the y-axis, and the z-axis.

    Solution

    Now, the unit-vector in the direction of \(\overrightarrow{v}=5\hat{i}+4\hat{j}+7\hat{k}\) is

    \[\hat{v}=\frac{\overrightarrow{v}}{\left\|\overrightarrow{v}\right\|} \nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.4,\ 7\right\rangle \right.}{\sqrt{5^2+4^2+7^2}}\nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.4,\ 7\right\rangle \right.}{\sqrt{25+16+49}}\nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.-3,\ 4\right\rangle \right.}{\sqrt{90}}\nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.4,\ 7\right\rangle \right.}{\sqrt{9\bullet 10}}\nonumber \] \[\hat{v}=\frac{\left\langle 5,\left.4,\ 7\right\rangle \right.}{3\sqrt{10}}\nonumber \] \[\hat{v}=\left\langle \frac{5}{3\sqrt{10}},\left.\frac{4}{3\sqrt{10}},\frac{7}{3\sqrt{10}}\right\rangle \right.\nonumber \] \[\overrightarrow{v}=\frac{5}{3\sqrt{10}}\hat{i}+\frac{4}{3\sqrt{10}}\hat{j}+\frac{7}{3\sqrt{10}}\hat{k}\nonumber \]

    Normalizing a Vector

    Normalizing a vector is a common practice in mathematics and it also has practical applications in computer graphics. Normalizing a vector \(\overrightarrow{v}\) is the process of identifying the unit vector of a vector \(\overrightarrow{v}\).

    Using Technology

    We can use technology to find the unit vector in the direction of the given vector.

    Go to www.wolframalpha.com.

    Use WolframAlpha to find the unit vector in the direction of \(\overrightarrow{u}\boldsymbol{=}\left\langle 5,\left.4,\ 3\right\rangle \right.\). Enter normalize \(\mathrm{<}\)5,4,3\(\mathrm{>}\) in the entry field and WolframAlpha gives you an answer.

    This screenshot from WolframAlpha shows the normalization of vector <5,4,3. The result is 1 over the square root of 2, 2 times the square root of 2 over 5, and 3 over the 5 times the square root of 2." src="/@api/deki/files/97444/clipboard_e93161cd99c52ed22a96bec8b04b475d0.png">

    Translate WolframAlpha’s answer to \(\frac{1}{\sqrt{2}}\hat{i}+\frac{2\sqrt{2}}{5}\hat{j}+\frac{3}{5\sqrt{2}}\hat{k}\).

    Try These

    Exercise \(\PageIndex{1}\)

    Write the unit vector that corresponds to \(\vec{v}=\langle 2,-3,4\rangle\).

    Answer

    \(\frac{2}{\sqrt{29}}\hat{i}-\frac{3}{\sqrt{29}}\hat{j}+\frac{4}{\sqrt{29}}\hat{k}\)

    Exercise \(\PageIndex{2}\)

    Write the unit vector that corresponds to \(\vec{v}=\langle 1,-1,1\rangle\).

    Answer

    \(\frac{1}{\sqrt{3}}\hat{i}-\frac{1}{\sqrt{3}}\hat{j}+\frac{1}{\sqrt{3}}\hat{k}\)

    Exercise \(\PageIndex{3}\)

    Write the unit vector that corresponds to \(\vec{v}-\vec{u}=\langle 6,7,2\rangle-\langle 2,7,6\rangle\).

    Answer

    \(\frac{1}{\sqrt{2}}\hat{i}-\frac{1}{\sqrt{2}}\hat{k}\)

    Exercise \(\PageIndex{4}\)

    Normalize the vector \(\vec{v}=\langle 4,3,2\rangle\).

    Answer

    \(\frac{4}{\sqrt{29}}\hat{i}+\frac{3}{\sqrt{29}}\hat{j}+\frac{2}{\sqrt{29}}\hat{k}\)


    This page titled 3.4: The Unit Vector in 3-Dimensions and Vectors in Standard Position is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski (Downey Unified School District) .