Skip to main content
Mathematics LibreTexts

3.3: Arithmetic on Vectors in 3-Dimensional Space

  • Page ID
    125037

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Addition and Subtraction of Vectors

    To add or subtract two vectors, add or subtract their corresponding components.

    Example \(\PageIndex{1}\)

    Add the vectors \(\overrightarrow{u}=\left\langle 2,\ 5,\ \left.4\right\rangle \right.\) and \(\overrightarrow{v}=\left\langle 4,\left.2,1\right\rangle \right.,\)

    Solution

    To add the vectors \(\overrightarrow{u}=\left\langle 2,\ 5,\ \left.4\right\rangle \right.\) and \(\overrightarrow{v}=\left\langle 4,\left.2,1\right\rangle \right.,\) add their corresponding components.

    \[\overrightarrow{u}\ +\ \overrightarrow{v}=\left\langle 2+4,\left.5+2,\ 4+1\right\rangle \right.=\ \left\langle 6,\left.7,\ 5\right\rangle \right. \nonumber \] So, \(\overrightarrow{u}\ +\ \overrightarrow{v}=\left\langle 6,\left.7,\ 5\right\rangle \right.\)

    A diagram showing two vectors in a 3-dimensional coordinate system. In the xyz plane, we have two vectors. We have vector u that has a starting point of (0,0,0) and a terminal point of (2,5,4). We have vector v that has a starting point of (0,0,0) and a terminal point of (4,2,1).  There are lines that connect these vectors to the x-axis, the y-axis, and the z-axis.

    Now, graph this sum. Start at the origin.

    Since the \(x-\)component is 6, move 6 units in the \(x-\)direction.

    Since the \(y-\)component is 7, move 7 units in the \(y-\)direction.

    Since the \(z-\)component is 5, move 5 units upward.

    A diagram showing two vectors in a 3-dimensional coordinate system and the graph of their sum. In the xyz plane, we have three vectors. We have vector u that has a starting point of (0,0,0) and a terminal point of (2,5,4). We have vector v that has a starting point of (0,0,0) and a terminal point of (4,2,1). Then, we have a vector u + v has a starting point of (0,0,0) and the terminal point is (2,5,1). There are lines that connect these vectors to the x-axis, the y-axis, and the z-axis.

    Example \(\PageIndex{2}\)

    Subtract the vectors \(\overrightarrow{u}\boldsymbol{=}\left\langle 2,\ 5,\ \left.4\right\rangle \right.\) and \(\overrightarrow{v}\boldsymbol{=}\left\langle 4,\left.2,\ 1\right\rangle \right.\)

    Solution

    To subtract the vectors \(\overrightarrow{u}\boldsymbol{=}\left\langle 2,\ 5,\ \left.4\right\rangle \right.\) and \(\overrightarrow{v}\boldsymbol{=}\left\langle 4,\left.2,\ 1\right\rangle \right.\) subtract their corresponding components.

    \[\overrightarrow{u}-\ \overrightarrow{v}\boldsymbol{=}\left\langle 2-4,\left.5-2,\ 4-1\right\rangle \right.\boldsymbol{=\ }\left\langle -2,\left.3,\ 3\right\rangle \right. \nonumber \]

    So, \(\overrightarrow{u}-\ \overrightarrow{v}\boldsymbol{=}\left\langle -2,\left.3,\ 3\right\rangle \right.\)

    Scalar Multiplication

    Definition: Term

    Scalar multiplication is the multiplication of a vector by a real number (a scalar).

    Suppose we let the letter \(k\) represent a real number and \(\overrightarrow{v}\) be the vector \(\left\langle x\right.,\left.y,z\right\rangle .\boldsymbol{\ }\)Then, the scalar multiple of the vector \(\overrightarrow{v}\) is

    \[k \vec{v}=\langle k x, k y, k z\rangle \nonumber \]

    Example \(\PageIndex{3}\)

    Suppose \(\overrightarrow{u}=\left\langle -3,\left.-8,\ 5\right\rangle \right.\) and \(k=3\).

    Solution

    Then \(k\overrightarrow{u}=\) 3\(\overrightarrow{u}=3\left\langle -3,\left.-8,\ 5\right\rangle \right.=\ \left\langle 3(-3),\left.3\left(-8\right),3\eqref{GrindEQ__5_}\right\rangle \right.=\left\langle -9,\left.-24,\ 15\right\rangle \right.\)

    Example \(\PageIndex{4}\)

    Suppose \(\overrightarrow{v}=\left\langle 6,\left.3,-12\right\rangle \right.\) and \(k=\frac{-1}{3}\).

    Solution

    Then \(k\overrightarrow{u}=\) \(\frac{-1}{3}\overrightarrow{u}=\frac{-1}{3}\left\langle 6,\left.3,\ -12\right\rangle \right.=\ \left\langle \frac{-1}{3}\left(6\right),\left.\frac{-1}{3}\left(3\right),\frac{-1}{3}(-12)\right\rangle \right.=\left\langle -2,\left.-1,\ 4\right\rangle \right.\)

    Example \(\PageIndex{5}\)

    Suppose \(\overrightarrow{u}=\left[ \begin{array}{c} \begin{array}{c} -2 \\ 6 \end{array} \\ 0 \end{array} \right]\), \(\overrightarrow{v}=\left[ \begin{array}{c} 1 \\ 2 \\ -8 \end{array} \right]\), and \(\overrightarrow{w}=\left[ \begin{array}{c} -3 \\ -1 \\ 2 \end{array} \right]\). Find \(3\overrightarrow{u}+4\overrightarrow{v}-2\overrightarrow{w}.\)

    Solution

    Then \(3\overrightarrow{u}+4\overrightarrow{v}-2\overrightarrow{w}=3\left[ \begin{array}{c} \begin{array}{c} -2 \\ 6 \end{array} \\ 0 \end{array} \right]+4\left[ \begin{array}{c} 1 \\ 2 \\ -8 \end{array} \right]-2\left[ \begin{array}{c} -3 \\ -1 \\ 2 \end{array} \right]=\left[ \begin{array}{c} \begin{array}{c} -6 \\ 18 \end{array} \\ 0 \end{array} \right]+\left[ \begin{array}{c} 4 \\ 8 \\ -32 \end{array} \right]+\left[ \begin{array}{c} 6 \\ 2 \\ -4 \end{array} \right]=\left[ \begin{array}{c} 4 \\ 28 \\ -36 \end{array} \right] \nonumber \)

    Using Technology

    We can use technology to determine the value of adding or subtracting vectors.

    Go to www.wolframalpha.com.

    Suppose \(\overrightarrow{u}=\left[ \begin{array}{c} \begin{array}{c} -2 \\ 6 \end{array} \\ 0 \end{array} \right]\), \(\overrightarrow{v}=\left[ \begin{array}{c} 1 \\ 2 \\ -8 \end{array} \right]\), and \(\overrightarrow{w}=\left[ \begin{array}{c} -3 \\ -1 \\ 2 \end{array} \right]\). Use WolframAlpha to find \(3\overrightarrow{u}+4\overrightarrow{v}-2\overrightarrow{w}.\) In the entry field enter evaluate \(3 *[-2,6,0]+4 *[1,2,-8]-2 *[-3,-1,2]\).

    This screenshot from WolframAlpha shows an equation with scalar multiplication and vector addition and subtraction. We have 3 times <negative 2,6,0 plus 4 times <1,2, negative 8> minus 2 times . The result is <4,28, negative 36>." src="/@api/deki/files/97440/clipboard_e674088772cf81d9ce229ad6440ed593c.png">

    WolframAlpha answers \((4,\ 28,\ -36)\) which is WolframAlpha’s notation for \(\left[ \begin{array}{c} 4 \\ 28 \\ -36 \end{array} \right]\).

    Try These

    Exercise \(\PageIndex{1}\)

    Add the vectors \(\vec{u}=\langle-3,4,6\rangle\) and \(\vec{v}=\langle 8,7,-5\rangle\).

    Answer

    \(\overrightarrow{u}\ +\ \overrightarrow{v}=\left\langle 5,\left.11,\ 1\right\rangle \right.\)

    Exercise \(\PageIndex{2}\)

    Subtract the vector \(\vec{v}=\langle 8,7,-5\rangle\) from the vector \(\vec{u}=\langle-3,4,6\rangle\).

    Answer

    \(\overrightarrow{u}-\ \overrightarrow{v}=\left\langle -11,\left.-3,\ 11\right\rangle \right.\)

    Exercise \(\PageIndex{3}\)

    Given the three vectors, \(\vec{u}=\langle 2,4,-5\rangle, \vec{v}=\langle-3,4,-8\rangle\), and \(\vec{w}=\langle 0,1,2\rangle\), find \(2 \vec{u}+3 \vec{v}-4 \vec{w}\).

    Answer

    \(2\overrightarrow{u}+3\overrightarrow{v}-4\overrightarrow{w}\ =\left\langle -5,\left.16,\ -42\right\rangle \right.\)

    Exercise \(\PageIndex{4}\)

    Suppose \(\vec{u}=\left[\begin{array}{c}
    3 \\
    4 \\
    -2
    \end{array}\right], \vec{v}=\left[\begin{array}{c}
    -1 \\
    6 \\
    4
    \end{array}\right]\), and \(\vec{w}=\left[\begin{array}{l}
    0 \\
    5 \\
    2
    \end{array}\right]\), find \(4 \vec{u}-4 \vec{v}-\vec{w}\)

    Answer

    \(4\overrightarrow{u}-4\overrightarrow{v}-\overrightarrow{w}=\left\langle 16,\left.-13,\ -26\right\rangle \right.\)


    This page titled 3.3: Arithmetic on Vectors in 3-Dimensional Space is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski (Downey Unified School District) .

    • Was this article helpful?