1.3: Decimals
- Page ID
- 153107
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Decimal notation is based on powers of \(10\): \(0.1\) is one tenth, \(0.01\) is one hundredth, \(0.001\) is one thousandth, and so on.
thousands | hundreds | tens | ones/units | . | tenths | hundredths | thousandths |
Write each number.
- ninety and twenty-three hundredths
- seven and fifty-six thousandths
Adding & Subtracting Decimals
Before you add or subtract decimals, you must line up the decimal points.
Add each pair of numbers.
- \(3.75+12.8\)
- \(71.085+112.93\)
When subtracting, you may need to add zeros to the first number so you can borrow correctly.
Subtract each pair of numbers.
- \(46.57–38.29\)
- \(82.78–67.024\)
Multiplying Decimals
To multiply decimal numbers:
- Temporarily ignore the decimal points.
- Multiply the numbers as though they are whole numbers.
- Add the total number of decimal digits in the two numbers you multiplied. The result will have that number of digits to the right of the decimal point.
Note: You do NOT need to line up the decimal points when you are multiplying.
Multiply each pair of numbers.
- \(143\cdot29\)
- \(143\cdot2.9\)
- \(14.3\cdot2.9\)
- \(1.43\cdot2.9\)
- \(375\cdot175\)
- \(375\cdot0.175\)
- \(3.75\cdot1.75\)
- Evie worked \(37.5\) hours at a pay rate of \($17.50\) per hour. How much did she earn in total?
Dividing Decimals
Let’s review everyone’s favorite topic, long division. The three parts of a division are named as follows: dividend \(\div\) divisor = quotient. When this is written with a long division symbol, the dividend is inside the symbol, the divisor is on the left, and the quotient is the answer we create on top.
To divide by a decimal:
- Write in long division form.
- Move the decimal point of the divisor until it is a whole number.
- Move the decimal point of the dividend the same number of places to the right.
- Place the decimal point in the quotient directly above the decimal point in the dividend.
- Divide the numbers as though they are whole numbers.
- If necessary, add zeros to the right of the last digit of the dividend to continue.
Divide each pair of numbers.
- \(974\div4\)
- \(974\div0.4\)
- \(9,740\div0.04\)
- \(0.0974\div0.004\)
Rounding Numbers
It is often necessary to round a number to a specified place value. We will see more specific instructions in Modules 5 & 6, but let’s review the basics of rounding a number.
Rounding a number:
- Locate the rounding digit in the place to which you are rounding.
- Look at the test digit directly to the right of the rounding digit.
- If the test digit is 5 or greater, increase the rounding digit by 1 and drop all digits to its right.
- If the test digit is less than 5, keep the rounding digit the same and drop all digits to its right.
Round each number to the indicated place value.
- \(6,375\) (thousands)
- \(6,375\) (tens)
- \(0.7149\) (hundredths)
- \(0.7149\) (thousandths)
If a decimal answer goes on and on, it may be practical to round it off.
- A subscription to The Chicago Manual of Style Online costs \($44.00\). Determine the monthly cost, rounded to the nearest cent.
- In the summer of 1919, a military convoy (including Lt. Col. Dwight Eisenhower) drove from Washington, D.C. to San Francisco to assess the condition of the nation’s developing highway system. The journal entry for August 1 says “Good dirt roads. Made 82 miles in 11 hrs.”[1] What was the convoy’s effective speed in miles per hour for that day? Round your result to the nearest tenth.
- Source: https://after-ike.com/logbook-1919-transcontinental-military-convoy/. See www.nytimes.com/2019/07/07/opinion/the-most-important-road-trip-in-american-history.html if you're interested in the historical context. ↵