31.5: A New Way to Interpret a over b
- Page ID
- 40602
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Lesson
Let's investigate what a fraction means when the numerator and denominator are not whole numbers.
Exercise \(\PageIndex{1}\): Recalling Ways of Solving
Solve each equation. Be prepared to explain your reasoning.
\(0.07=10m\qquad 10.1=t+7.2\)
Exercise \(\PageIndex{2}\): Interpreting \(\frac{a}{b}\)
Solve each equation.
- \(35=7x\)
- \(35=11x\)
- \(7x=7.7\)
- \(0.3x=2.1\)
- \(\frac{2}{5}=\frac{1}{2}x\)
Are you ready for more?
Solve the equation. Try to find some shortcuts.
\(\frac{1}{6}\cdot\frac{3}{20}\cdot\frac{5}{42}\cdot\frac{7}{72}\cdot x=\frac{1}{384}\)
Exercise \(\PageIndex{3}\): Storytime Again
Take turns with your partner telling a story that might be represented by each equation. Then, for each equation, choose one story, state what quantity \(x\) describes, and solve the equation. If you get stuck, consider drawing a diagram.
\(0.7+x=12\qquad \frac{1}{4}x=\frac{3}{2}\)
Summary
In the past, you learned that a fraction such as \(\frac{4}{5}\) can be thought of in a few ways.
- \(\frac{4}{5}\) is a number you can locate on the number line by dividing the section between 0 and 1 into 5 equal parts and then counting 4 of those parts to the right of 0.
- \(\frac{4}{5}\) is the share that each person would have if 4 wholes were shared equally among 5 people. This means that \(\frac{4}{5}\) is the result of dividing 4 by 5.
We can extend this meaning of a fraction as a quotient to fractions whose numerators and denominators are not whole numbers. For example, we can represent 4.5 pounds of rice divided into portions that each weigh 1.5 pounds as: \(\frac{4.5}{1.5}=4.5\div 1.5=3\). In other words, \(\frac{4.5}{1.5}=3\) because the quotient of 4.5 and 1.5 is 3.
Fractions that involve non-whole numbers can also be used when we solve equations.
Suppose a road under construction is \(\frac{3}{8}\) finished and the length of the completed part is \(\frac{4}{3}\) miles. How long will the road be when completed?
We can write the equation \(\frac{3}{8}x=\frac{4}{3}\) to represent the situation and solve the equation.
The completed road will be \(3\frac{5}{9}\) or about 3.6 miles long.
\(\begin{aligned} \frac{3}{8}x&=\frac{4}{3} \\ x&=\frac{\frac{4}{3}}{\frac{3}{8}} \\ x&=\frac{4}{3}\cdot\frac{8}{3} \\ x&=\frac{32}{9}=3\frac{5}{9}\end{aligned}\)
Glossary Entries
Definition: Coefficient
A coefficient is a number that is multiplied by a variable.
For example, in the expression \(3x+5\), the coefficient of \(x\) is \(3\). In the expression \(y+5\), the coefficient of \(y\) is \(1\), because \(y=1\cdot y\).
Definition: Solution to an Equation
A solution to an equation is a number that can be used in place of the variable to make the equation true.
For example, 7 is the solution to the equation \(m+1=8\), because it is true that \(7+1=8\). The solution to \(m+1=8\) is not \(9\), because \(9+1\neq 8\).
Definition: Variable
A variable is a letter that represents a number. You can choose different numbers for the value of the variable.
For example, in the expression \(10-x\), the variable is \(x\). If the value of \(x\) is 3, then \(10-x=7\), because \(10-3=7\). If the value of \(x\) is \(6\), then \(10-x=4\), because \(10-6=4\).
Practice
Exercise \(\PageIndex{4}\)
Select all the expressions that equal \(\frac{3.15}{0.45}\).
- \((3.15)\cdot (0.45)\)
- \((3.15)\div (0.45)\)
- \((3.15)\cdot\frac{1}{0.45}\)
- \((3.15)\div\frac{45}{100}\)
- \((3.15)\cdot\frac{100}{45}\)
- \((\frac{0.45}{3.15}\)
Exercise \(\PageIndex{5}\)
Which expressions are solutions to the equation \(\frac{3}{4}x=15\)? Select all that apply.
- \(\frac{15}{\frac{3}{4}}\)
- \(\frac{15}{\frac{4}{3}}\)
- \(\frac{4}{3}\cdot 15\)
- \(\frac{3}{4}\cdot 15\)
- \(15\div\frac{3}{4}\)
Exercise \(\PageIndex{6}\)
Solve each equation.
\(4a=32\qquad 4=32b\qquad 10c=26\qquad 26=100d\)
Exercise \(\PageIndex{7}\)
For each equation, write a story problem represented by the equation. For each equation, state what quantity \(x\) represents. If you get stuck, consider drawing a diagram.
- \(\frac{3}{4}+x=2\)
- \(1.5x=6\)
Exercise \(\PageIndex{8}\)
Write as many mathematical expressions or equations as you can about the image. Include a fraction, a decimal number, or a percentage in each.

(From Unit 3.4.4)
Exercise \(\PageIndex{9}\)
In a lilac paint mixture, 40% of the mixture is white paint, 20% is blue, and the rest is red. There are 4 cups of blue paint used in a batch of lilac paint.
- How many cups of white paint are used?
- How many cups of red paint are used?
- How many cups of lilac paint will this batch yield?
If you get stuck, consider using a tape diagram.
(From Unit 3.4.3)
Exercise \(\PageIndex{10}\)
Triangle P has a base of 12 inches and a corresponding height of 8 inches. Triangle Q has a base of 15 inches and a corresponding height of 6.5 inches. Which triangle has a greater area? Show your reasoning.
(From Unit 1.3.3)