A.8: Conic Sections and Quadric Surfaces
- Page ID
- 92440
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A conic section is the curve of intersection of a cone and a plane that does not pass through the vertex of the cone. This is illustrated in the figures below.
An equivalent 1 (and often used) definition is that a conic section is the set of all points in the \(xy\)-plane that obey \(Q(x,y)=0\) with
\[ Q(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey + F =0 \nonumber \]
being a polynomial of degree two 2. By rotating and translating our coordinate system the equation of the conic section can be brought into one of the forms 3
- \(\alpha x^2 + \beta y^2 =\gamma \) with \(\alpha ,\be,\gamma \gt 0\text{,}\) which is an ellipse (or a circle),
- \(\alpha x^2 - \beta y^2 =\gamma \) with \(\alpha ,\beta \gt 0\text{,}\) \(\gamma \ne0\text{,}\) which is a hyperbola,
- \(x^2 = \delta y\text{,}\) with \(\delta\ne 0\) which is a parabola.
The three dimensional analogs of conic sections, surfaces in three dimensions given by quadratic equations, are called quadrics. An example is the sphere \(x^2+y^2+z^2=1\text{.}\)
Here are some tables giving all of the quadric surfaces.
name | elliptic cylinder | parabolic cylinder | hyperbolic cylinder | sphere |
equation in standard form | \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) | \(y=ax^2\) | \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) | \(x^2\!+\!y^2\!+\!z^2=r^2\) |
\(x=\)constant cross-section | two lines | one line | two lines | circle |
\(y=\)constant cross-section | two lines | two lines | two lines | circle |
\(z=\)constant cross-section | ellipse | parabola | hyperbola | circle |
sketch |
Figure A.8.1. Table of conic sections
name | ellipsoid | elliptic paraboloid | elliptic cone |
equation in standard form | \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) | \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z}{c}\) | \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}\) |
\(x=\) constant cross-section | ellipse | parabola | two lines if \(x=0\text{,}\) hyperbola if \(x\ne 0\) |
\(y=\) constant cross-section | ellipse | parabola | two lines if \(y=0\text{,}\)hyperbola if \(y\ne 0\) |
\(z=\) constant cross-section | ellipse | ellipse | ellipse |
sketch |
Figure A.8.2. Table of quadric surfaces-1
name | hyperboloid of one sheet | hyperboloid of two sheets | hyperbolic paraboloid |
equation in standard form | \(\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1\) | \(\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1\) | \(\frac{y^2}{b^2}-\frac{x^2}{a^2}=\frac{z}{c}\) |
\(x=\) constant cross-section | hyperbola | hyperbola | parabola |
\(y=\) constant cross-section | hyperbola | hyperbola | parabola |
\(z=\) constant cross-section | ellipse | ellipse | two lines if \(z=0\text{,}\) hyperbola if \(z\ne 0\) |
sketch |
Figure A.8.3. Table of quadric surfaces-2
It is outside our scope to prove this equivalence. Technically, we should also require that the constants \(A\text{,}\) \(B\text{,}\) \(C\text{,}\) \(D\text{,}\) \(E\text{,}\) \(F\text{,}\) are real numbers, that \(A\text{,}\) \(B\text{,}\) \(C\) are not all zero, that \(Q(x,y)=0\) has more than one real solution, and that the polynomial can't be factored into the product of two polynomials of degree one.