Skip to main content
Mathematics LibreTexts

3.4: The Quotient Rule

  • Page ID
    468
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    What is the derivative of \( (x^2+1)/(x^3-3x)\)? More generally, we'd like to have a formula to compute the derivative of \(f(x)/g(x)\) if we already know \(f'(x)\) and \(g'(x)\). Instead of attacking this problem head-on, let's notice that we've already done part of the problem: \(f(x)/g(x)= f(x)\cdot(1/g(x))\), that is, this is "really'' a product, and we can compute the derivative if we know \(f'(x)\) and \((1/g(x))'\).

    So really the only new bit of information we need is \((1/g(x))'\) in terms of \(g'(x)\). As with the product rule, let's set this up and see how far we can get:

    \[ \eqalign{ {d\over dx}{1\over g(x)}&=\lim_{\Delta x\to0} {{1\over g(x+\Delta x)}-{1\over g(x)}\over\Delta x}\cr& =\lim_{\Delta x\to0} {{g(x)-g(x+\Delta x)\over g(x+\Delta x)g(x)}\over\Delta x}\cr& =\lim_{\Delta x\to0} {g(x)-g(x+\Delta x)\over g(x+\Delta x)g(x)\Delta x}\cr& =\lim_{\Delta x\to0} -{g(x+\Delta x)-g(x)\over \Delta x} {1\over g(x+\Delta x)g(x)}\cr& =-{g'(x)\over g(x)^2}\cr }\]

    Now we can put this together with the product rule:

    \[ \begin{align} {d\over dx}{f(x)\over g(x)}& =f(x){-g'(x)\over g(x)^2}+f'(x){1\over g(x)} \\ &={-f(x)g'(x)+f'(x)g(x)\over g(x)^2} \\ &= {f'(x)g(x)-f(x)g'(x)\over g(x)^2}. \end{align}\]

    Example \(\PageIndex{1}\)

    Compute the derivative of \(\dfrac{x^2+1}{x^3-3x}.\)

    Solution

    \[ {d\over dx}{x^2+1\over x^3-3x}={2x(x^3-3x)-(x^2+1)(3x^2-3)\over(x^3-3x)^2}= {-x^4-6x^2+3\over (x^3-3x)^2}. \]

    It is often possible to calculate derivatives in more than one way, as we have already seen. Since every quotient can be written as a product, it is always possible to use the product rule to compute the derivative, though it is not always simpler.

    Example \(\PageIndex{2}\)

    Find the derivative of \( \sqrt{625-x^2}/\sqrt{x}\) in two ways: using the quotient rule, and using the product rule.

    Solution

    Quotient rule:

    \[{d\over dx}{\sqrt{625-x^2}\over\sqrt{x}} = {\sqrt{x}(-x/\sqrt{625-x^2})-\sqrt{625-x^2}\cdot 1/(2\sqrt{x})\over x}.\]

    Note that we have used \( \sqrt{x}=x^{1/2}\) to compute the derivative of \( \sqrt{x}\) by the power rule.

    Product rule:

    \[{d\over dx}\sqrt{625-x^2} x^{-1/2} = \sqrt{625-x^2} {-1\over 2}x^{-3/2}+{-x\over \sqrt{625-x^2}}x^{-1/2}. \]

    With a bit of algebra, both of these simplify to

    \[ -{x^2+625\over 2\sqrt{625-x^2}x^{3/2}}.\]

    Occasionally you will need to compute the derivative of a quotient with a constant numerator, like \( 10/x^2\). Of course you can use the quotient rule, but it is usually not the easiest method. If we do use it here, we get

    \[{d\over dx}{10\over x^2}={x^2\cdot 0-10\cdot 2x\over x^4}= {-20\over x^3},\]

    since the derivative of 10 is 0. But it is simpler to do this:

    \[{d\over dx}{10\over x^2}={d\over dx}10x^{-2}=-20x^{-3}.\]

    Admittedly, \( x^2\) is a particularly simple denominator, but we will see that a similar calculation is usually possible. Another approach is to remember that

    \[{d\over dx}{1\over g(x)}={-g'(x)\over g(x)^2},\]

    but this requires extra memorization. Using this formula,

    \[{d\over dx}{10\over x^2}=10{-2x\over x^4}.\]

    Note that we first use linearity of the derivative to pull the 10 out in front.

    Contributors


    This page titled 3.4: The Quotient Rule is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Guichard via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?