1.E: Applications of Limits (Exercises)
- Page ID
- 9966
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1.1: An Introduction to Limits
Terms and Concepts
- In your own words, what does it mean to "find the limit of \(f(x)\) as \(x\) approaches 3"?
- An expression of the form \(\frac00\) is called _____.
- T/F: The limit of \(f(x)\) as \(x\) approaches 5 is \(f(5)\).
- Describe three situations where \(\lim\limits_{x\to c}f(x)\) does not exist.
- In your own words, what is a difference quotient.
Problems
In Exercises 6-16, approximate the given limits both numerically and graphically.
6. \(\lim\limits_{x\to 1}x^2+3x-5\)
7. \(\lim\limits_{x\to 0}x^3-3x^2+x-5\)
8. \(\lim\limits_{x\to 0}\frac{x+1}{x^2+3x}\)
9. \(\lim\limits_{x\to 3}\frac{x^2-2x-3}{x^2-4x+3}\)
10. \(\lim\limits_{x\to-1}\frac{x^2+8x+7}{x^2+6x+5}\)
11. \(\lim\limits_{x\to 2}\frac{x^2+7x+10}{x^2-4x+4}\)
12. \(\lim\limits_{x\to 2}\), where \( f(x) = \begin{cases}x+2 \quad x\le 2\\ 3x-5 \quad x>2 \end{cases}.\)
13. \(\lim\limits_{x\to 3}\), where \( f(x) = \begin{cases}x^2-x+1 \quad & x\le 3\\ 2x+1 &x>3 \end{cases}.\)
14. \(\lim\limits_{x\to 0}\), where \( f(x) = \begin{cases}\cos x \quad & x\le 0\\ x^2+3x+1 &x>0 \end{cases}.\)
15. \(\lim\limits_{x\to \pi/2}\), where \( f(x) = \begin{cases}\sin x \quad & x\le \pi/2\\ \cos x &x>\pi/2 \end{cases}.\)
In Exercises 16-24, a function \(f\) and a value \(a\) are given. Approximate the limit of the difference quotient, \(\lim\limits_{h\to 0}\frac{f(a+h)-f(a)}{h}\), using \(h=\pm 0.1,\, \pm 0.01.\)
16. \(f(x)=-7x+2,\quad a=3\)
17. \(f(x)=9x+0.06,\quad a=-1\)
18. \(f(x)=x^2+3x-7,\quad a=1\)
19. \(f(x)=\frac{1}{x+1},\quad a=2\)
20. \(f(x)=-4x^2+5x-1,\quad a=-3\)
21. \(f(x)=\ln x,\quad a=5\)
22. \(f(x)=\sin x,\quad a=\pi\)
23. \(f(x)=\cos x,\quad a=\pi\)
1.2: Epsilon-Delta Definition of a Limit
Terms and Concepts
1. What is wrong with the following "definition" of a limit?
"The limit of \(f(x)\), as x approaches \(a\), is \(K''\) means that given any \(\delta >0\) there exists \(\epsilon >0\) such that whenever \(|f(x)-K|<\epsilon\), we have \(|x-a|<\delta\).
2. Which is given first in establishing a limit, the x-tolerance or the y-tolerance?
3. T/F: \(\epsilon\) must always be positive.
4. T/F: \(\delta\) must always be positive.
Problems
In Exercises 5-11, prove the given limit using an \(\epsilon -\delta\) proof.
5. \(\lim\limits_{x\to5}3-x+-2\)
6. \(\lim\limits_{x\to3}x^2-3=6\)
7. \(\lim\limits_{x\to4}x^2+x-5=15\)
8. \(\lim\limits_{x\to2}x^3-1=7\)
9. \(\lim\limits_{x\to2}5=5\)
10. \(\lim\limits_{x\to0}e^{2x}-1=0\)
11. \(\lim\limits_{x\to0}\sin x = 0\) (Hint: use the fact that \(|\sin x |\le |x|,\) with equality only when \(x=0\).)
1.3: Finding Limits Analytically
Terms and Concepts
1. Explain in your own words, without using \(ε-δ\) formality, why \(\lim\limits_{x\to c}b=b\).
2. Explain in your own words, without using \(ε-δ\) formality, why \(\lim\limits_{x\to c}x=c\).
3. What does the text mean when it says that certain functions’ “behavior is ‘nice’ in terms of limits”? What, in particular, is “nice”?
4. Sketch a graph that visually demonstrates the Squeeze Theorem.
5. You are given the following information:
(a) \(\lim\limits_{x\to1}f(x)=0\)
(b)\(\lim\limits_{x\to1}g(x)=0\)
(c)\(\lim\limits_{x\to1}f(x)/g(x) =2\)
What can be said about the relative sizes of \(f(x)\) and \(g(x)\) as x approaches 1?
Problems
Using:
\[\begin{align}\lim\limits_{x\to9}f(x)=6 \qquad \lim\limits_{x\to6}f(x)=9 \\ \lim\limits_{x\to9}g(x)=3 \qquad \lim\limits_{x\to6}g(x)=3 \end{align}\]
evaluate the limits given in Exercises 6-13, where possible. If it is not possible to know, state so.
6. \(\lim\limits_{x\to9}(f(x)+g(x))\)
7. \(\lim\limits_{x\to9}(3f(x)/g(x))\)
8. \(\lim\limits_{x\to9} \left ( \frac{f(x)-2g(x)}{g(x)}\right )\)
9. \(\lim\limits_{x\to6}\left (\frac{f(x)}{3-g(x)}\right )\)
10. \(\lim\limits_{x\to9}g(f(x))\)
11. \(\lim\limits_{x\to6}f(g(x))\)
12. \(\lim\limits_{x\to6}g(f(f(x)))\)
13. \(\lim\limits_{x\to6}f(x)g(x)-f^2(x)+g^2(x)\)
Using
\[\begin{align}\lim\limits_{x\to1}f(x)=2 \qquad \lim\limits_{x\to10}f(x)=1 \\ \lim\limits_{x\to1}g(x)=0 \qquad \lim\limits_{x\to10}g(x)=\pi \end{align}\]
evaluate the limits given in Exercises 14-17, where possible. If it is not possible to know, state so.
14. \(\lim\limits_{x\to1}f(x)^{g(x)}\)
15. \(\lim\limits_{x\to10}\cos (g(x))\)
16. \(\lim\limits_{x\to1}f(x)g(x)\)
17. \(\lim\limits_{x\to1}g(5f(x))\)
In Exercises 18-32, evaluate the given limit.
18. \(\lim\limits_{x\to3}x^2-3x+7\)
19. \(\lim\limits_{x\to\pi}\left ( \frac{x-3}{x+5}\right )^7\)
20. \(\lim\limits_{x\to\pi /4}\cos x \sin x\)
21. \(\lim\limits_{x\to 0}\ln x\)
22. \(\lim\limits_{x\to3}4^{{x^3}-8x}\)
23. \(\lim\limits_{x\to\pi/6}\csc x\)
24. \(\lim\limits_{x\to0}\ln (1+x)\)
25. \(\lim\limits_{x\to\pi}\frac{x^2+3x+5}{5x^2-2x-3}\)
26.\(\lim\limits_{x\to\pi}\frac{3x+1}{1-x}\)
27.\(\lim\limits_{x\to6}\frac{x^2-4x-12}{x^2-13x+42}\)
28.\(\lim\limits_{x\to0}\frac{x^2+2x}{x^2-2x}\)
29.\(\lim\limits_{x\to2}\frac{x^2+6x-16}{x^2-3x+2}\)
30.\(\lim\limits_{x\to2}\frac{x^2-5x-14}{x^2+10x+16}\)
31.\(\lim\limits_{x\to-2}\frac{x^2-5x-14}{x^2+10x+16}\)
32.\(\lim\limits_{x\to-1}\frac{x^2+9x+8}{x^2-6x-7}\)\
Use the Squeeze Theorem in Exercises 33-36, where appropriate, to evaluate the given limit.
33. \(\lim\limits_{x\to0} x\sin \left (\frac{1}{x}\right )\)
34. \(\lim\limits_{x\to0}\sin x \cos \left ( \frac{1}{x^2}\right )\)
35. \(\lim\limits_{x\to1}f(x)\), where \(3x-2\le f(x)\le x^3.\)
36. \(\lim\limits_{x\to3+}f(x),\) where \(6x-9\le f(x)\le x^2\) on [0,3].
Exercises 37-40, challenge your understanding of limits but can be evaluated using the knowledge gained in this section.
37. \(\lim\limits_{x\to0}\frac{\sin 3x}{x}\)
38. \(\lim\limits_{x\to0}\frac{\sin 5x}{8x}\)
39. \(\lim\limits_{x\to0}\frac{\ln (1+x)}{x}\)
40. \(\lim\limits_{x\to0}\frac{\sin x}{x}\), where x is measured in degrees not radians.
1.4: One Sided Limits
Terms and Concepts
1. What are the three ways in which a limit may fail to exist?
2. T/F: If \(\lim\limits_{x\to1-}f(x)=5\), then \(\lim\limits_{x\to1}f(x)=5\)
3. T/F: If \(\lim\limits_{x\to1-}f(x)=5\), then \(\lim\limits_{x\to1+}f(x)=5\)
4. T/F: If \(\lim\limits_{x\to1}f(x)=5\), then \(\lim\limits_{x\to1-}f(x)=5\)
Problems
In Exercises 5-12, evaluate each expression using the given graph of \(f(x)\).
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13-21, evaluate the given limits of the piecewise defined functions \(f\).
13. \(f(x) = \begin{cases} x+1 \quad &x\le 1\\ x^2-5 &x>1 \end{cases}\)
(a) \(\lim\limits_{x\to1^-}f(x) \)
(b) \(\lim\limits_{x\to0^+}f(x)\)
(c) \(\lim\limits_{x\to1}f(x) \)
(d) \(f(1)\)
14. \(f(x) = \begin{cases} 2x^2+5x-1 \quad &x<0 \\ \sin x &x\ge 0 \end{cases}\)
(a) \(\lim\limits_{x\to0^-}f(x)\)
(b) \(\lim\limits_{x\to0^+}f(x)\)
(c) \(\lim\limits_{x\to0}f(x) \)
(d) \(f(0)\)
15. \(f(x) = \begin{cases} x^-1 \quad &x<-1 \\ x^3+1 &-1\le x \le 1 \\ x^2+1 &x>1 \end{cases}\)
(a) \(\lim\limits_{x\to-1^-}f(x)\)
(b) \(\lim\limits_{x\to1^+}f(x)\)
(c) \(\lim\limits_{x\to-1}f(x) \)
(d) \(f(-1)\)
(e) \(\lim\limits_{x\to1^-}f(x)\)
(f) \(\lim\limits_{x\to1^+}f(x)\)
(g) \(\lim\limits_{x\to1}f(x)\)
(h) \(f(1)\)
16. \(f(x) = \begin{cases} \cos x \quad &x<\pi \\ \sin x &x\ge \pi \end{cases}\)
(a) \(\lim\limits_{x\to\pi^-}f(x)\)
(b) \(\lim\limits_{x\to\pi^+}f(x)\)
(c) \(\lim\limits_{x\to\pi}f(x) \)
(d) \(f(\pi)\)
17. \(f(x) = \begin{cases} 1-\cos ^2 x \quad &x<a \\ \sin^2 x &x\ge a \end{cases}\), where \(a\) is a real number.
(a) \(\lim\limits_{x\to a^-}f(x)\)
(b) \(\lim\limits_{x\to a^+}f(x)\)
(c) \(\lim\limits_{x\to a}f(x) \)
(d) \(f(a)\)
18. \(f(x) = \begin{cases} x+1 \quad &x<1 \\ 1 &x=1 \\ x-1 &x>1 \end{cases}\)
(a) \(\lim\limits_{x\to1^-}f(x)\)
(b) \(\lim\limits_{x\to1^+}f(x)\)
(c) \(\lim\limits_{x\to1}f(x) \)
(d) \(f(1)\)
19. \(f(x) = \begin{cases} x^2 \quad &x<2 \\ x+1 &x=2 \\ -x^2+2x+4 &x>2 \end{cases}\)
(a) \(\lim\limits_{x\to2^-}f(x)\)
(b) \(\lim\limits_{x\to2^+}f(x)\)
(c) \(\lim\limits_{x\to2}f(x) \)
(d) \(f(2)\)
20. \(f(x) = \begin{cases} a(x-b)^2+c\quad &x<b \\ a(x-b)+c &x\ge b \end{cases}\), where a, b and c are real numbers.
(a) \(\lim\limits_{x\to b^-}f(x)\)
(b) \(\lim\limits_{x\to b^+}f(x)\)
(c) \(\lim\limits_{x\to b}f(x) \)
(d) \(f(b)\)
21. \(f(x) = \begin{cases}\frac{|x|}{x} \quad &x\ne 0 \\ 0 &x= 0 \end{cases}\)
(a) \(\lim\limits_{x\to0^-}f(x)\)
(b) \(\lim\limits_{x\to0^+}f(x)\)
(c) \(\lim\limits_{x\to0}f(x) \)
(d) \(f(0)\)
Review
22. Evaluate the limit: \(\lim\limits_{x\to -1}\frac{x^2+5x+4}{x^2-3x-4}\)
23. Evaluate the limit: \(\lim\limits_{x\to -4}\frac{x^2-16}{x^2-4x-32}\)
24. Evaluate the limit: \(\lim\limits_{x\to -6}\frac{x^2-15x+54}{x^2-6x}\)
25. Approximate the limit numerically: \(\lim\limits_{x\to 0.4}\frac{x^2-4.4x+1.6}{x^2-0.4x}\)
26. Approximate the limit numerically: \(\lim\limits_{x\to 0.2}\frac{x^2+5.8x-1.2}{x^2-4.2x+0.8}\)
1.5: Continuity
Terms and Concepts
1. In your own words, describe what it means for a function to be continuous.
2. In your own words, describe what the Intermediate Value Theorem states.
3. What is a “root” of a function?
4. Given functions \(f\text{ and }g\) on an interval \(I\), how can the Bisection Method be used to find a value c where \(f(c) = g(c)\)?
5. T/F: If \(f\) is defined on an open interval containing c, and \(\lim\limits_{x\to c} f(x)\) exists, then \(f\) is continuous at c.
6. T/F: If \(f\) is continuous at c, then \(\lim\limits_{x\to c} f(x)\) exists
7. T/F: If \(f\) is continuous at c, then \(\lim\limits_{x\to c^+} f(x)=f(c)\).
8. T/F: If \(f\) is continuous on [a, b], then \(\lim\limits_{x\to a^-} f(x)=f(a)\).
9. T/F: If f is continuous on [0, 1) and [1, 2), then \(f\) is continuous on [0, 2).
10. T/F: The sum of continuous functions is also continuous.
Problems
In Exercises 11-17, a graph of a function \(f\) is given along with a value \(a\). Determine if \(f\) is continuous at \(a\); if it is not, state why it is not.
11. \(a=1\)
12. \(a=1\)
13. \(a=1\)
14. \(a=0\)
15. \(a=1\)
16. \(a=4\)
17.
(a) \(a=-2\)
(b) \(a=0\)
(c) \(a=2\)
In Exercises 18-21, determine if \(f\) is continuous at the indicated values. If not, explain why.
18. \(f(x) = \begin{cases} 1 \quad &x=0\\ \frac{\sin x}{x} &x>0 \end{cases}\)
(a) \(x=0\)
(b) \(x=\pi\)
19. \(f(x) = \begin{cases} x^3-x \quad &x<1\\ x-2 &x\ge 1 \end{cases}\)
(a) \(x=0\)
(b) \(x=1\)
20. \(f(x) = \begin{cases} \frac{x^2+5x+4}{x^2 +3x+2} \quad &x\ne -1\\ 3 &x=-1 \end{cases}\)
(a) \(x=-1\)
(b) \(x=10\)
21. \(f(x) = \begin{cases} \frac{x^2-64}{x^2-11x+24} \quad &x\ne 8\\ 5 &x=8 \end{cases}\)
(a) \(x=0\)
(b) \(x=8\)
In Exercises 22-32, give the intervals on which the given function is continuous.
22. \(f(x)=x^2-3x+9\)
23. \(g(x) = \sqrt{x^2-4}\)
24. \(h(k) = \sqrt{1-k}+\sqrt{k+1}\)
25. \(f(t) = \sqrt{5t^2-30}\)
26. \(g(t) = \frac{1}{\sqrt{1-t^2}}\)
27. \(g(x) = \frac{1}{1+x^2}\)
28. \(f(x) = e^x\)
29. \(g(s) = \ln s \)
30. \(h(t) = \cos t\)
31. \(f(k) = \sqrt{1-e^k}\)
32. \(f(x) = \sin (e^x+x^2)\)
33. Let \(f\) be continuous on [1,5] where \(f(1) = -2 \text{ and }f(5)=-10\). Does a value \(1<c<5\) exist such that \(f(c)=-9\)? Why/why not?
34. Let \(g\) be continuous on [-3,7] where \(g(0)=0 \text{ and }g(2)=25\). Does a value \(-3<c<7\) exist such that \(g(c)=15?\) Why/why not?
35. Let \(f\) be continuous on [-1,1] where \(f(-1)=-10 \text{ and }f(1)=10\). Does a value \(-1<c<1\) exist such that \(f(c)=11?\) Why/why not?
36. Let \(h\) be continuous on [-1,1] where \(h(-1)=-10 \text{ and }h(1)=10\). Does a value \(-1<c<1\) exist such that \(h(c)=0?\) Why/why not?
In Exercises 37-40, use the Bisection Method to approximate, accurate to two decimal places, the value of the root of the given function in the given interval.
37. \(f(x) = x^2+2x-4\text{ on }[1,1.5]\).
38. \(f(x) = \sin x -1/2\text{ on }[0.5,0.55]\).
39. \(f(x) = e^x-2\text{ on }[0.65,0.7]\).
40. \(f(x) = \cos x -\sin x \text{ on }[0.7,0.8]\).
Review
41. Let \(f(x) = \begin{cases} x^2-5 \quad &x<5\\ 5x &x\ge 5 \end{cases}\).
(a) \(\lim\limits_{x\to 5^-}f(x)\)
(b) \(\lim\limits_{x\to 5^+}f(x)\)
(c) \(\lim\limits_{x\to 5}f(x)\)
(d) \(f(5)\)
42. Numerically approximate the following limits:
(a) \(\lim\limits_{x\to 4/5^+}\frac{x^2-8.2x-7.2}{x^2+5.8x+4}\)
(b) \(\lim\limits_{x\to 4/5^-}\frac{x^2-8.2x-7.2}{x^2+5.8x+4}\)
43. Give an example of function \(f(x)\) for which \(\lim\limits_{x\to 0}f(x)\) does not exist.
1.6: Limits Involving Infinity
Terms and Concepts
1. T/F: If \(\lim\limits_{x\to 5}f(x)=\infty\), then we are implicitly stating that the limit exists.
2. T/F: If \(\lim\limits_{x\to \infty}f(x)=5\), then we are implicitly stating that the limit exists.
3. T/F: If \(\lim\limits_{x\to 1^-}f(x)=-\infty\), then \(\lim\limits_{x\to 1^+}f(x)=\infty\).
4. T/F: If \(\lim\limits_{x\to 5}f(x)=\infty\), then \(f\) has a vertical asymptote at \(x=5\).
5. T/F: \(\infty/0\) is not an indeterminate form.
6. List 5 indeterminate forms.
7. Construct a function with a vertical asymptote at x = 5 and a horizontal asymptote at y = 5.
8. Let \(\lim\limits_{x\to 7}f(x)=\infty\). Explain how we know that \(f\) is/is not continuous at \(x=7\).
Problems
In Exercises 9-14, evaluate the given limits using the graph of the function.
9. \(f(x) = \frac{1}{(x+1)^2}\)
(a) \(\lim\limits_{x\to -1^-}f(x)\)
(b) \(\lim\limits_{x\to -1^+}f(x)\)
10. \(f(x) = \frac{1}{(x-3)(x-5)^2}\)
(a) \(\lim\limits_{x\to 3^-}f(x)\)
(b) \(\lim\limits_{x\to 3^+}f(x)\)
(c) \(\lim\limits_{x\to 3}f(x)\)
(d) \(\lim\limits_{x\to 5^-}f(x)\)
(e) \(\lim\limits_{x\to 5^+}f(x)\)
(f) \(\lim\limits_{x\to 5}f(x)\)
11. \(f(x) = \frac{1}{e^x+1}\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
(c) \(\lim\limits_{x\to 0^-}f(x)\)
(d) \(\lim\limits_{x\to 0^+}f(x)\)
12. \(f(x) = x^2\sin (\pi x)\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
13. \(f(x)=\cos (x)\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
14. \(f(x) = 2^x +10\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
In Exercises 15-18, numerically approximate the following limits:
(a) \(\lim\limits_{x\to 3^-}f(x)\)
(b) \(\lim\limits_{x\to 3^+}f(x)\)
(c) \(\lim\limits_{x\to 3}f(x)\)
15. \(f(x) = \frac{x^2-1}{x^2-x-6}\)
16. \(f(x) = \frac{x^2+5x-36}{x^3-5x^2+3x+9}\)
17. \(f(x) = \frac{x^2-11x+30}{x^3-4x^2-3x+18}\)
18. \(f(x) = \frac{x^2-9x+18}{x^2-x-6}\)
In Exercises 19-24, identify the horizontal and vertical asymptotes, if any, of the given function.
19. \(f(x) = \frac{2x^2-2x-4}{x^2+x-20}\)
20. \(f(x) = \frac{-3x^2-9x-6}{5x^2-10x-15}\)
21. \(f(x) = \frac{x^2+2-12}{7x^3-14x^2-21x}\)
22. \(f(x) = \frac{x^2-9}{9x-9}\)
23. \(f(x) = \frac{x^2-9}{9x+27}\)
24. \(f(x) = \frac{x^2-1}{-x^2-1}\)
In Exercises 25-28, evaluate the given limit.
25. \(\lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{x-5}\)
26. \(\lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{5-x}\)
27. \(\lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{x^2-5}\)
28. \(\lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{5-x^2}\)
Review
29. Use an \(ε − δ\) proof to show that \(\lim\limits_{x\to 1}5x-2=3\).
30. Let \(\lim\limits_{x\to 2}f(x)=3\text{ and }\lim\limits_{x\to 2}g(x)=-1\). Evaluate the following limits.
(a) \(\lim\limits_{x\to 2}(f+g)(x)\)
(b) \(\lim\limits_{x\to 2}(fg)(x)\)
(c) \(\lim\limits_{x\to 2}(f/g)(x)\)
(d) \(\lim\limits_{x\to 2}f(x)^{g(x)}\)
31. Let \(f(x) = \begin{cases}x^2-1 \qquad &x<3 \\ x+5 &x \ge 3 \end{cases}\). Is \(f\) continuous everywhere?
32. Evaluate the limit: \(\lim\limits_{x\to c}\ln x\).