1.E: Applications of Limits (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
1.1: An Introduction to Limits
Terms and Concepts
- In your own words, what does it mean to "find the limit of f(x) as x approaches 3"?
- An expression of the form 00 is called _____.
- T/F: The limit of f(x) as x approaches 5 is f(5).
- Describe three situations where limx→cf(x) does not exist.
- In your own words, what is a difference quotient.
Problems
In Exercises 6-16, approximate the given limits both numerically and graphically.
6. limx→1x2+3x−5
7. limx→0x3−3x2+x−5
8. limx→0x+1x2+3x
9. limx→3x2−2x−3x2−4x+3
10. limx→−1x2+8x+7x2+6x+5
11. limx→2x2+7x+10x2−4x+4
12. limx→2, where f(x)={x+2x≤23x−5x>2.
13. limx→3, where f(x)={x2−x+1x≤32x+1x>3.
14. limx→0, where f(x)={cosxx≤0x2+3x+1x>0.
15. limx→π/2, where f(x)={sinxx≤π/2cosxx>π/2.
In Exercises 16-24, a function f and a value a are given. Approximate the limit of the difference quotient, limh→0f(a+h)−f(a)h, using h=±0.1,±0.01.
16. f(x)=−7x+2,a=3
17. f(x)=9x+0.06,a=−1
18. f(x)=x2+3x−7,a=1
19. f(x)=1x+1,a=2
20. f(x)=−4x2+5x−1,a=−3
21. f(x)=lnx,a=5
22. f(x)=sinx,a=π
23. f(x)=cosx,a=π
1.2: Epsilon-Delta Definition of a Limit
Terms and Concepts
1. What is wrong with the following "definition" of a limit?
"The limit of f(x), as x approaches a, is K″ means that given any δ>0 there exists ϵ>0 such that whenever |f(x)−K|<ϵ, we have |x−a|<δ.
2. Which is given first in establishing a limit, the x-tolerance or the y-tolerance?
3. T/F: ϵ must always be positive.
4. T/F: δ must always be positive.
Problems
In Exercises 5-11, prove the given limit using an ϵ−δ proof.
5. limx→53−x+−2
6. limx→3x2−3=6
7. limx→4x2+x−5=15
8. limx→2x3−1=7
9. limx→25=5
10. limx→0e2x−1=0
11. limx→0sinx=0 (Hint: use the fact that |sinx|≤|x|, with equality only when x=0.)
1.3: Finding Limits Analytically
Terms and Concepts
1. Explain in your own words, without using ε-δ formality, why \lim\limits_{x\to c}b=b.
2. Explain in your own words, without using ε-δ formality, why \lim\limits_{x\to c}x=c.
3. What does the text mean when it says that certain functions’ “behavior is ‘nice’ in terms of limits”? What, in particular, is “nice”?
4. Sketch a graph that visually demonstrates the Squeeze Theorem.
5. You are given the following information:
(a) \lim\limits_{x\to1}f(x)=0
(b)\lim\limits_{x\to1}g(x)=0
(c)\lim\limits_{x\to1}f(x)/g(x) =2
What can be said about the relative sizes of f(x) and g(x) as x approaches 1?
Problems
Using:
\begin{align}\lim\limits_{x\to9}f(x)=6 \qquad \lim\limits_{x\to6}f(x)=9 \\ \lim\limits_{x\to9}g(x)=3 \qquad \lim\limits_{x\to6}g(x)=3 \end{align}
evaluate the limits given in Exercises 6-13, where possible. If it is not possible to know, state so.
6. \lim\limits_{x\to9}(f(x)+g(x))
7. \lim\limits_{x\to9}(3f(x)/g(x))
8. \lim\limits_{x\to9} \left ( \frac{f(x)-2g(x)}{g(x)}\right )
9. \lim\limits_{x\to6}\left (\frac{f(x)}{3-g(x)}\right )
10. \lim\limits_{x\to9}g(f(x))
11. \lim\limits_{x\to6}f(g(x))
12. \lim\limits_{x\to6}g(f(f(x)))
13. \lim\limits_{x\to6}f(x)g(x)-f^2(x)+g^2(x)
Using
\begin{align}\lim\limits_{x\to1}f(x)=2 \qquad \lim\limits_{x\to10}f(x)=1 \\ \lim\limits_{x\to1}g(x)=0 \qquad \lim\limits_{x\to10}g(x)=\pi \end{align}
evaluate the limits given in Exercises 14-17, where possible. If it is not possible to know, state so.
14. \lim\limits_{x\to1}f(x)^{g(x)}
15. \lim\limits_{x\to10}\cos (g(x))
16. \lim\limits_{x\to1}f(x)g(x)
17. \lim\limits_{x\to1}g(5f(x))
In Exercises 18-32, evaluate the given limit.
18. \lim\limits_{x\to3}x^2-3x+7
19. \lim\limits_{x\to\pi}\left ( \frac{x-3}{x+5}\right )^7
20. \lim\limits_{x\to\pi /4}\cos x \sin x
21. \lim\limits_{x\to 0}\ln x
22. \lim\limits_{x\to3}4^{{x^3}-8x}
23. \lim\limits_{x\to\pi/6}\csc x
24. \lim\limits_{x\to0}\ln (1+x)
25. \lim\limits_{x\to\pi}\frac{x^2+3x+5}{5x^2-2x-3}
26.\lim\limits_{x\to\pi}\frac{3x+1}{1-x}
27.\lim\limits_{x\to6}\frac{x^2-4x-12}{x^2-13x+42}
28.\lim\limits_{x\to0}\frac{x^2+2x}{x^2-2x}
29.\lim\limits_{x\to2}\frac{x^2+6x-16}{x^2-3x+2}
30.\lim\limits_{x\to2}\frac{x^2-5x-14}{x^2+10x+16}
31.\lim\limits_{x\to-2}\frac{x^2-5x-14}{x^2+10x+16}
32.\lim\limits_{x\to-1}\frac{x^2+9x+8}{x^2-6x-7}\
Use the Squeeze Theorem in Exercises 33-36, where appropriate, to evaluate the given limit.
33. \lim\limits_{x\to0} x\sin \left (\frac{1}{x}\right )
34. \lim\limits_{x\to0}\sin x \cos \left ( \frac{1}{x^2}\right )
35. \lim\limits_{x\to1}f(x), where 3x-2\le f(x)\le x^3.
36. \lim\limits_{x\to3+}f(x), where 6x-9\le f(x)\le x^2 on [0,3].
Exercises 37-40, challenge your understanding of limits but can be evaluated using the knowledge gained in this section.
37. \lim\limits_{x\to0}\frac{\sin 3x}{x}
38. \lim\limits_{x\to0}\frac{\sin 5x}{8x}
39. \lim\limits_{x\to0}\frac{\ln (1+x)}{x}
40. \lim\limits_{x\to0}\frac{\sin x}{x}, where x is measured in degrees not radians.
1.4: One Sided Limits
Terms and Concepts
1. What are the three ways in which a limit may fail to exist?
2. T/F: If \lim\limits_{x\to1-}f(x)=5, then \lim\limits_{x\to1}f(x)=5
3. T/F: If \lim\limits_{x\to1-}f(x)=5, then \lim\limits_{x\to1+}f(x)=5
4. T/F: If \lim\limits_{x\to1}f(x)=5, then \lim\limits_{x\to1-}f(x)=5
Problems
In Exercises 5-12, evaluate each expression using the given graph of f(x).
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13-21, evaluate the given limits of the piecewise defined functions f.
13. f(x) = \begin{cases} x+1 \quad &x\le 1\\ x^2-5 &x>1 \end{cases}
(a) \lim\limits_{x\to1^-}f(x)
(b) \lim\limits_{x\to0^+}f(x)
(c) \lim\limits_{x\to1}f(x)
(d) f(1)
14. f(x) = \begin{cases} 2x^2+5x-1 \quad &x<0 \\ \sin x &x\ge 0 \end{cases}
(a) \lim\limits_{x\to0^-}f(x)
(b) \lim\limits_{x\to0^+}f(x)
(c) \lim\limits_{x\to0}f(x)
(d) f(0)
15. f(x) = \begin{cases} x^-1 \quad &x<-1 \\ x^3+1 &-1\le x \le 1 \\ x^2+1 &x>1 \end{cases}
(a) \lim\limits_{x\to-1^-}f(x)
(b) \lim\limits_{x\to1^+}f(x)
(c) \lim\limits_{x\to-1}f(x)
(d) f(-1)
(e) \lim\limits_{x\to1^-}f(x)
(f) \lim\limits_{x\to1^+}f(x)
(g) \lim\limits_{x\to1}f(x)
(h) f(1)
16. f(x) = \begin{cases} \cos x \quad &x<\pi \\ \sin x &x\ge \pi \end{cases}
(a) \lim\limits_{x\to\pi^-}f(x)
(b) \lim\limits_{x\to\pi^+}f(x)
(c) \lim\limits_{x\to\pi}f(x)
(d) f(\pi)
17. f(x) = \begin{cases} 1-\cos ^2 x \quad &x<a \\ \sin^2 x &x\ge a \end{cases}, where a is a real number.
(a) \lim\limits_{x\to a^-}f(x)
(b) \lim\limits_{x\to a^+}f(x)
(c) \lim\limits_{x\to a}f(x)
(d) f(a)
18. f(x) = \begin{cases} x+1 \quad &x<1 \\ 1 &x=1 \\ x-1 &x>1 \end{cases}
(a) \lim\limits_{x\to1^-}f(x)
(b) \lim\limits_{x\to1^+}f(x)
(c) \lim\limits_{x\to1}f(x)
(d) f(1)
19. f(x) = \begin{cases} x^2 \quad &x<2 \\ x+1 &x=2 \\ -x^2+2x+4 &x>2 \end{cases}
(a) \lim\limits_{x\to2^-}f(x)
(b) \lim\limits_{x\to2^+}f(x)
(c) \lim\limits_{x\to2}f(x)
(d) f(2)
20. f(x) = \begin{cases} a(x-b)^2+c\quad &x<b \\ a(x-b)+c &x\ge b \end{cases}, where a, b and c are real numbers.
(a) \lim\limits_{x\to b^-}f(x)
(b) \lim\limits_{x\to b^+}f(x)
(c) \lim\limits_{x\to b}f(x)
(d) f(b)
21. f(x) = \begin{cases}\frac{|x|}{x} \quad &x\ne 0 \\ 0 &x= 0 \end{cases}
(a) \lim\limits_{x\to0^-}f(x)
(b) \lim\limits_{x\to0^+}f(x)
(c) \lim\limits_{x\to0}f(x)
(d) f(0)
Review
22. Evaluate the limit: \lim\limits_{x\to -1}\frac{x^2+5x+4}{x^2-3x-4}
23. Evaluate the limit: \lim\limits_{x\to -4}\frac{x^2-16}{x^2-4x-32}
24. Evaluate the limit: \lim\limits_{x\to -6}\frac{x^2-15x+54}{x^2-6x}
25. Approximate the limit numerically: \lim\limits_{x\to 0.4}\frac{x^2-4.4x+1.6}{x^2-0.4x}
26. Approximate the limit numerically: \lim\limits_{x\to 0.2}\frac{x^2+5.8x-1.2}{x^2-4.2x+0.8}
1.5: Continuity
Terms and Concepts
1. In your own words, describe what it means for a function to be continuous.
2. In your own words, describe what the Intermediate Value Theorem states.
3. What is a “root” of a function?
4. Given functions f\text{ and }g on an interval I, how can the Bisection Method be used to find a value c where f(c) = g(c)?
5. T/F: If f is defined on an open interval containing c, and \lim\limits_{x\to c} f(x) exists, then f is continuous at c.
6. T/F: If f is continuous at c, then \lim\limits_{x\to c} f(x) exists
7. T/F: If f is continuous at c, then \lim\limits_{x\to c^+} f(x)=f(c).
8. T/F: If f is continuous on [a, b], then \lim\limits_{x\to a^-} f(x)=f(a).
9. T/F: If f is continuous on [0, 1) and [1, 2), then f is continuous on [0, 2).
10. T/F: The sum of continuous functions is also continuous.
Problems
In Exercises 11-17, a graph of a function f is given along with a value a. Determine if f is continuous at a; if it is not, state why it is not.
11. a=1
12. a=1
13. a=1
14. a=0
15. a=1
16. a=4
17.
(a) a=-2
(b) a=0
(c) a=2
In Exercises 18-21, determine if f is continuous at the indicated values. If not, explain why.
18. f(x) = \begin{cases} 1 \quad &x=0\\ \frac{\sin x}{x} &x>0 \end{cases}
(a) x=0
(b) x=\pi
19. f(x) = \begin{cases} x^3-x \quad &x<1\\ x-2 &x\ge 1 \end{cases}
(a) x=0
(b) x=1
20. f(x) = \begin{cases} \frac{x^2+5x+4}{x^2 +3x+2} \quad &x\ne -1\\ 3 &x=-1 \end{cases}
(a) x=-1
(b) x=10
21. f(x) = \begin{cases} \frac{x^2-64}{x^2-11x+24} \quad &x\ne 8\\ 5 &x=8 \end{cases}
(a) x=0
(b) x=8
In Exercises 22-32, give the intervals on which the given function is continuous.
22. f(x)=x^2-3x+9
23. g(x) = \sqrt{x^2-4}
24. h(k) = \sqrt{1-k}+\sqrt{k+1}
25. f(t) = \sqrt{5t^2-30}
26. g(t) = \frac{1}{\sqrt{1-t^2}}
27. g(x) = \frac{1}{1+x^2}
28. f(x) = e^x
29. g(s) = \ln s
30. h(t) = \cos t
31. f(k) = \sqrt{1-e^k}
32. f(x) = \sin (e^x+x^2)
33. Let f be continuous on [1,5] where f(1) = -2 \text{ and }f(5)=-10. Does a value 1<c<5 exist such that f(c)=-9? Why/why not?
34. Let g be continuous on [-3,7] where g(0)=0 \text{ and }g(2)=25. Does a value -3<c<7 exist such that g(c)=15? Why/why not?
35. Let f be continuous on [-1,1] where f(-1)=-10 \text{ and }f(1)=10. Does a value -1<c<1 exist such that f(c)=11? Why/why not?
36. Let h be continuous on [-1,1] where h(-1)=-10 \text{ and }h(1)=10. Does a value -1<c<1 exist such that h(c)=0? Why/why not?
In Exercises 37-40, use the Bisection Method to approximate, accurate to two decimal places, the value of the root of the given function in the given interval.
37. f(x) = x^2+2x-4\text{ on }[1,1.5].
38. f(x) = \sin x -1/2\text{ on }[0.5,0.55].
39. f(x) = e^x-2\text{ on }[0.65,0.7].
40. f(x) = \cos x -\sin x \text{ on }[0.7,0.8].
Review
41. Let f(x) = \begin{cases} x^2-5 \quad &x<5\\ 5x &x\ge 5 \end{cases}.
(a) \lim\limits_{x\to 5^-}f(x)
(b) \lim\limits_{x\to 5^+}f(x)
(c) \lim\limits_{x\to 5}f(x)
(d) f(5)
42. Numerically approximate the following limits:
(a) \lim\limits_{x\to 4/5^+}\frac{x^2-8.2x-7.2}{x^2+5.8x+4}
(b) \lim\limits_{x\to 4/5^-}\frac{x^2-8.2x-7.2}{x^2+5.8x+4}
43. Give an example of function f(x) for which \lim\limits_{x\to 0}f(x) does not exist.
1.6: Limits Involving Infinity
Terms and Concepts
1. T/F: If \lim\limits_{x\to 5}f(x)=\infty, then we are implicitly stating that the limit exists.
2. T/F: If \lim\limits_{x\to \infty}f(x)=5, then we are implicitly stating that the limit exists.
3. T/F: If \lim\limits_{x\to 1^-}f(x)=-\infty, then \lim\limits_{x\to 1^+}f(x)=\infty.
4. T/F: If \lim\limits_{x\to 5}f(x)=\infty, then f has a vertical asymptote at x=5.
5. T/F: \infty/0 is not an indeterminate form.
6. List 5 indeterminate forms.
7. Construct a function with a vertical asymptote at x = 5 and a horizontal asymptote at y = 5.
8. Let \lim\limits_{x\to 7}f(x)=\infty. Explain how we know that f is/is not continuous at x=7.
Problems
In Exercises 9-14, evaluate the given limits using the graph of the function.
9. f(x) = \frac{1}{(x+1)^2}
(a) \lim\limits_{x\to -1^-}f(x)
(b) \lim\limits_{x\to -1^+}f(x)
10. f(x) = \frac{1}{(x-3)(x-5)^2}
(a) \lim\limits_{x\to 3^-}f(x)
(b) \lim\limits_{x\to 3^+}f(x)
(c) \lim\limits_{x\to 3}f(x)
(d) \lim\limits_{x\to 5^-}f(x)
(e) \lim\limits_{x\to 5^+}f(x)
(f) \lim\limits_{x\to 5}f(x)
11. f(x) = \frac{1}{e^x+1}
(a) \lim\limits_{x\to -\infty}f(x)
(b) \lim\limits_{x\to \infty}f(x)
(c) \lim\limits_{x\to 0^-}f(x)
(d) \lim\limits_{x\to 0^+}f(x)
12. f(x) = x^2\sin (\pi x)
(a) \lim\limits_{x\to -\infty}f(x)
(b) \lim\limits_{x\to \infty}f(x)
13. f(x)=\cos (x)
(a) \lim\limits_{x\to -\infty}f(x)
(b) \lim\limits_{x\to \infty}f(x)
14. f(x) = 2^x +10
(a) \lim\limits_{x\to -\infty}f(x)
(b) \lim\limits_{x\to \infty}f(x)
In Exercises 15-18, numerically approximate the following limits:
(a) \lim\limits_{x\to 3^-}f(x)
(b) \lim\limits_{x\to 3^+}f(x)
(c) \lim\limits_{x\to 3}f(x)
15. f(x) = \frac{x^2-1}{x^2-x-6}
16. f(x) = \frac{x^2+5x-36}{x^3-5x^2+3x+9}
17. f(x) = \frac{x^2-11x+30}{x^3-4x^2-3x+18}
18. f(x) = \frac{x^2-9x+18}{x^2-x-6}
In Exercises 19-24, identify the horizontal and vertical asymptotes, if any, of the given function.
19. f(x) = \frac{2x^2-2x-4}{x^2+x-20}
20. f(x) = \frac{-3x^2-9x-6}{5x^2-10x-15}
21. f(x) = \frac{x^2+2-12}{7x^3-14x^2-21x}
22. f(x) = \frac{x^2-9}{9x-9}
23. f(x) = \frac{x^2-9}{9x+27}
24. f(x) = \frac{x^2-1}{-x^2-1}
In Exercises 25-28, evaluate the given limit.
25. \lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{x-5}
26. \lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{5-x}
27. \lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{x^2-5}
28. \lim\limits_{x\to \infty}\frac{x^3+2x^2+1}{5-x^2}
Review
29. Use an ε − δ proof to show that \lim\limits_{x\to 1}5x-2=3.
30. Let \lim\limits_{x\to 2}f(x)=3\text{ and }\lim\limits_{x\to 2}g(x)=-1. Evaluate the following limits.
(a) \lim\limits_{x\to 2}(f+g)(x)
(b) \lim\limits_{x\to 2}(fg)(x)
(c) \lim\limits_{x\to 2}(f/g)(x)
(d) \lim\limits_{x\to 2}f(x)^{g(x)}
31. Let f(x) = \begin{cases}x^2-1 \qquad &x<3 \\ x+5 &x \ge 3 \end{cases}. Is f continuous everywhere?
32. Evaluate the limit: \lim\limits_{x\to c}\ln x.