Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.E: Applications of Limits (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

1.1: An Introduction to Limits

Terms and Concepts

  1. In your own words, what does it mean to "find the limit of f(x) as x approaches 3"?
  2. An expression of the form 00 is called _____.
  3. T/F: The limit of f(x) as x approaches 5 is f(5).
  4. Describe three situations where limxcf(x) does not exist.
  5. In your own words, what is a difference quotient.

Problems

In Exercises 6-16, approximate the given limits both numerically and graphically.

6. limx1x2+3x5

7. limx0x33x2+x5

8. limx0x+1x2+3x

9. limx3x22x3x24x+3

10. limx1x2+8x+7x2+6x+5

11. limx2x2+7x+10x24x+4

12. limx2, where f(x)={x+2x23x5x>2.

13. limx3, where f(x)={x2x+1x32x+1x>3.

14. limx0, where f(x)={cosxx0x2+3x+1x>0.

15. limxπ/2, where f(x)={sinxxπ/2cosxx>π/2.

In Exercises 16-24, a function f and a value a are given. Approximate the limit of the difference quotient, limh0f(a+h)f(a)h, using h=±0.1,±0.01.

16. f(x)=7x+2,a=3

17. f(x)=9x+0.06,a=1

18. f(x)=x2+3x7,a=1

19. f(x)=1x+1,a=2

20. f(x)=4x2+5x1,a=3

21. f(x)=lnx,a=5

22. f(x)=sinx,a=π

23. f(x)=cosx,a=π

1.2: Epsilon-Delta Definition of a Limit

Terms and Concepts

1. What is wrong with the following "definition" of a limit?

"The limit of f(x), as x approaches a, is K means that given any δ>0 there exists ϵ>0 such that whenever |f(x)K|<ϵ, we have |xa|<δ.

2. Which is given first in establishing a limit, the x-tolerance or the y-tolerance?

3. T/F: ϵ must always be positive.

4. T/F: δ must always be positive.

Problems

In Exercises 5-11, prove the given limit using an ϵδ proof.

5. limx53x+2

6. limx3x23=6

7. limx4x2+x5=15

8. limx2x31=7

9. limx25=5

10. limx0e2x1=0

11. limx0sinx=0 (Hint: use the fact that |sinx||x|, with equality only when x=0.)

1.3: Finding Limits Analytically

Terms and Concepts

1. Explain in your own words, without using εδ formality, why limxcb=b.

2. Explain in your own words, without using εδ formality, why limxcx=c.

3. What does the text mean when it says that certain functions’ “behavior is ‘nice’ in terms of limits”? What, in particular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze Theorem.

5. You are given the following information:

(a) limx1f(x)=0

(b)limx1g(x)=0

(c)limx1f(x)/g(x)=2

What can be said about the relative sizes of f(x) and g(x) as x approaches 1?

Problems

Using:

limx9f(x)=6limx6f(x)=9limx9g(x)=3limx6g(x)=3

evaluate the limits given in Exercises 6-13, where possible. If it is not possible to know, state so.

6. limx9(f(x)+g(x))

7. limx9(3f(x)/g(x))

8. limx9(f(x)2g(x)g(x))

9. limx6(f(x)3g(x))

10. limx9g(f(x))

11. limx6f(g(x))

12. limx6g(f(f(x)))

13. limx6f(x)g(x)f2(x)+g2(x)

Using

limx1f(x)=2limx10f(x)=1limx1g(x)=0limx10g(x)=π

evaluate the limits given in Exercises 14-17, where possible. If it is not possible to know, state so.

14. limx1f(x)g(x)

15. limx10cos(g(x))

16. limx1f(x)g(x)

17. limx1g(5f(x))

In Exercises 18-32, evaluate the given limit.

18. limx3x23x+7

19. limxπ(x3x+5)7

20. limxπ/4cosxsinx

21. limx0lnx

22. limx34x38x

23. limxπ/6cscx

24. limx0ln(1+x)

25. limxπx2+3x+55x22x3

26.limxπ3x+11x

27.limx6x24x12x213x+42

28.limx0x2+2xx22x

29.limx2x2+6x16x23x+2

30.limx2x25x14x2+10x+16

31.limx2x25x14x2+10x+16

32.limx1x2+9x+8x26x7\

Use the Squeeze Theorem in Exercises 33-36, where appropriate, to evaluate the given limit.

33. limx0xsin(1x)

34. limx0sinxcos(1x2)

35. limx1f(x), where 3x2f(x)x3.

36. limx3+f(x), where 6x9f(x)x2 on [0,3].

Exercises 37-40, challenge your understanding of limits but can be evaluated using the knowledge gained in this section.

37. limx0sin3xx

38. limx0sin5x8x

39. limx0ln(1+x)x

40. limx0sinxx, where x is measured in degrees not radians.

1.4: One Sided Limits

Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If limx1f(x)=5, then limx1f(x)=5

3. T/F: If limx1f(x)=5, then limx1+f(x)=5

4. T/F: If limx1f(x)=5, then limx1f(x)=5

Problems

In Exercises 5-12, evaluate each expression using the given graph of f(x).

5.
clipboard_e4f5a8bce92d31a43cde475d21c7bbb8f.png

6.
146.PNG

7.
147.PNG

8.
148.PNG

9.
149.PNG

10.
1410.PNG

11.
1411.PNG

12.
1412.PNG

In Exercises 13-21, evaluate the given limits of the piecewise defined functions f.

13. f(x)={x+1x1x25x>1
(a) limx1f(x)
(b) limx0+f(x)
(c) limx1f(x)
(d) f(1)

14. f(x)={2x2+5x1x<0sinxx0
(a) limx0f(x)
(b) limx0+f(x)
(c) limx0f(x)
(d) f(0)

15. f(x)={x1x<1x3+11x1x2+1x>1
(a) limx1f(x)
(b) limx1+f(x)
(c) limx1f(x)
(d) f(1)
(e) limx1f(x)
(f) limx1+f(x)
(g) limx1f(x)
(h) f(1)

16. f(x)={cosxx<πsinxxπ
(a) limxπf(x)
(b) limxπ+f(x)
(c) limxπf(x)
(d) f(π)

17. f(x)={1cos2xx<asin2xxa, where a is a real number.
(a) limxaf(x)
(b) limxa+f(x)
(c) limxaf(x)
(d) f(a)

18. f(x)={x+1x<11x=1x1x>1
(a) limx1f(x)
(b) limx1+f(x)
(c) limx1f(x)
(d) f(1)

19. f(x)={x2x<2x+1x=2x2+2x+4x>2
(a) limx2f(x)
(b) limx2+f(x)
(c) limx2f(x)
(d) f(2)

20. f(x)={a(xb)2+cx<ba(xb)+cxb, where a, b and c are real numbers.
(a) limxbf(x)
(b) limxb+f(x)
(c) limxbf(x)
(d) f(b)

21. f(x)={|x|xx00x=0
(a) limx0f(x)
(b) limx0+f(x)
(c) limx0f(x)
(d) f(0)

Review

22. Evaluate the limit: limx1x2+5x+4x23x4

23. Evaluate the limit: limx4x216x24x32

24. Evaluate the limit: limx6x215x+54x26x

25. Approximate the limit numerically: limx0.4x24.4x+1.6x20.4x

26. Approximate the limit numerically: limx0.2x2+5.8x1.2x24.2x+0.8

1.5: Continuity

Terms and Concepts

1. In your own words, describe what it means for a function to be continuous.

2. In your own words, describe what the Intermediate Value Theorem states.

3. What is a “root” of a function?

4. Given functions f and g on an interval I, how can the Bisection Method be used to find a value c where f(c)=g(c)?

5. T/F: If f is defined on an open interval containing c, and limxcf(x) exists, then f is continuous at c.

6. T/F: If f is continuous at c, then limxcf(x) exists

7. T/F: If f is continuous at c, then limxc+f(x)=f(c).

8. T/F: If f is continuous on [a, b], then limxaf(x)=f(a).

9. T/F: If f is continuous on [0, 1) and [1, 2), then f is continuous on [0, 2).

10. T/F: The sum of continuous functions is also continuous.

Problems

In Exercises 11-17, a graph of a function f is given along with a value a. Determine if f is continuous at a; if it is not, state why it is not.

11. a=1
1511.PNG

12. a=1
1512.PNG

13. a=1
1513.PNG

14. a=0
1514.PNG

15. a=1
1515.PNG

16. a=4
1516.PNG

17.
(a) a=2
(b) a=0
(c) a=2
1517.PNG

In Exercises 18-21, determine if f is continuous at the indicated values. If not, explain why.

18. f(x)={1x=0sinxxx>0
(a) x=0
(b) x=π

19. f(x)={x3xx<1x2x1
(a) x=0
(b) x=1

20. f(x)={x2+5x+4x2+3x+2x13x=1
(a) x=1
(b) x=10

21. f(x)={x264x211x+24x85x=8
(a) x=0
(b) x=8

In Exercises 22-32, give the intervals on which the given function is continuous.

22. f(x)=x23x+9

23. g(x)=x24

24. h(k)=1k+k+1

25. f(t)=5t230

26. g(t)=11t2

27. g(x)=11+x2

28. f(x)=ex

29. g(s)=lns

30. h(t)=cost

31. f(k)=1ek

32. f(x)=sin(ex+x2)

33. Let f be continuous on [1,5] where f(1)=2 and f(5)=10. Does a value 1<c<5 exist such that f(c)=9? Why/why not?

34. Let g be continuous on [-3,7] where g(0)=0 and g(2)=25. Does a value 3<c<7 exist such that g(c)=15? Why/why not?

35. Let f be continuous on [-1,1] where f(1)=10 and f(1)=10. Does a value 1<c<1 exist such that f(c)=11? Why/why not?

36. Let h be continuous on [-1,1] where h(1)=10 and h(1)=10. Does a value 1<c<1 exist such that h(c)=0? Why/why not?

In Exercises 37-40, use the Bisection Method to approximate, accurate to two decimal places, the value of the root of the given function in the given interval.

37. f(x)=x2+2x4 on [1,1.5].

38. f(x)=sinx1/2 on [0.5,0.55].

39. f(x)=ex2 on [0.65,0.7].

40. f(x)=cosxsinx on [0.7,0.8].

Review

41. Let f(x)={x25x<55xx5.
(a) limx5f(x)
(b) limx5+f(x)
(c) limx5f(x)
(d) f(5)

42. Numerically approximate the following limits:
(a) limx4/5+x28.2x7.2x2+5.8x+4
(b) limx4/5x28.2x7.2x2+5.8x+4

43. Give an example of function f(x) for which limx0f(x) does not exist.

1.6: Limits Involving Infinity

Terms and Concepts

1. T/F: If limx5f(x)=, then we are implicitly stating that the limit exists.

2. T/F: If limxf(x)=5, then we are implicitly stating that the limit exists.

3. T/F: If limx1f(x)=, then limx1+f(x)=.

4. T/F: If limx5f(x)=, then f has a vertical asymptote at x=5.

5. T/F: /0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a function with a vertical asymptote at x = 5 and a horizontal asymptote at y = 5.

8. Let limx7f(x)=. Explain how we know that f is/is not continuous at x=7.

Problems

In Exercises 9-14, evaluate the given limits using the graph of the function.

9. f(x)=1(x+1)2
(a) limx1f(x)
(b) limx1+f(x)
169.PNG

10. f(x)=1(x3)(x5)2
(a) limx3f(x)
(b) limx3+f(x)
(c) limx3f(x)
(d) limx5f(x)
(e) limx5+f(x)
(f) limx5f(x)
1610.PNG

11. f(x)=1ex+1
(a) limxf(x)
(b) limxf(x)
(c) limx0f(x)
(d) limx0+f(x)
1611.PNG

12. f(x)=x2sin(πx)
(a) limxf(x)
(b) limxf(x)
1612.PNG

13. f(x)=cos(x)
(a) limxf(x)
(b) limxf(x)
1613.PNG

14. f(x)=2x+10
(a) limxf(x)
(b) limxf(x)
1614.PNG

In Exercises 15-18, numerically approximate the following limits:
(a) limx3f(x)
(b) limx3+f(x)
(c) limx3f(x)

15. f(x)=x21x2x6

16. f(x)=x2+5x36x35x2+3x+9

17. f(x)=x211x+30x34x23x+18

18. f(x)=x29x+18x2x6

In Exercises 19-24, identify the horizontal and vertical asymptotes, if any, of the given function.

19. f(x)=2x22x4x2+x20

20. f(x)=3x29x65x210x15

21. f(x)=x2+2127x314x221x

22. f(x)=x299x9

23. f(x)=x299x+27

24. f(x)=x21x21

In Exercises 25-28, evaluate the given limit.

25. limxx3+2x2+1x5

26. limxx3+2x2+15x

27. limxx3+2x2+1x25

28. limxx3+2x2+15x2

Review

29. Use an εδ proof to show that limx15x2=3.

30. Let limx2f(x)=3 and limx2g(x)=1. Evaluate the following limits.
(a) limx2(f+g)(x)
(b) limx2(fg)(x)
(c) limx2(f/g)(x)
(d) limx2f(x)g(x)

31. Let f(x)={x21x<3x+5x3. Is f continuous everywhere?

32. Evaluate the limit: limxclnx.


1.E: Applications of Limits (Exercises) is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?