Skip to main content
Mathematics LibreTexts

3.4: Summary

  • Page ID
    121097
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. If we "zoom in" enough on a point \(x_{0}\) on a graph of a function (with "smooth" behavior), we see a straight line. This straight line is the tangent line at that point. The slope of this line is the derivative (instantaneous rate of change) at that point, \(x_{0}\).
    2. Given the graph of a function \(f(x)\), the derivative \(f^{\prime}(x)\) can be sketched by approximating the slopes of the tangent lines of \(f(x)\), and plotting those slopes as points.
    3. A function is continuous at \(x=a\) in its domain if \(\lim _{x \rightarrow a} f(x)=f(a)\). Discontinuous functions might have a hole (removable discontinuity), a jump, or blow up.
    4. Computing derivatives requires the use of limits: \[f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \nonumber \] Limits are detailed further in Appendix D. In the absence of analytical methods, or in the presence of only data, a numerical derivative calculus can be used to approximate: \[f^{\prime}(x)_{\text {numerical }} \approx \frac{\Delta f}{\Delta x} . \nonumber \]
    5. Derivatives that were computed in this chapters are summarized in Table 3.1.
    6. The applications we encountered in this chapter included:
      1. molecular motors and vesicle transport; and
      2. Michaelis-Menten and Hill function kinetics for reaction speeds.
    Table 3.1: Some computed derivatives.
    \(\mathbf{f}(\mathbf{x})\) \(\mathbf{f}^{\prime}(\mathbf{x})\)
    \(C\) 0
    \(B x\) \(B\)
    \(B x+C\) \(B\)
    \(K x^{3}\) \(3 K x^{2}\)
    \(\frac{1}{x}\) \(-\frac{1}{x^{2}}\)
    \(\sqrt{x}\) \(\frac{1}{2 \sqrt{x}}\)
    Quick Concept Checks
    1. What geometric characteristic might stop a function from having a derivative?
    2. Find the derivative of \(y=2 x+1\) using a
      1. geometric argument, and
      2. algebraic argument.
    3. Draw the derivative of the function \(f(x)\) at \(x=1\), depicted on the graph below.

    clipboard_eda58b9c81367d0bc8b22d8d405717b7f.png

    1. Define a continuous function.

    This page titled 3.4: Summary is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Leah Edelstein-Keshet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.