Skip to main content
Mathematics LibreTexts

3.13: Multirule Derivatives

  • Page ID
    88653
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Okay, let’s talk about \(\frac{d}{dx} \ e^{x^2 + x} \sin(x)\). If you’re thinking this looks like a product rule, but it also looks like a chain rule, you’re right. To compute this derivative, we need to do the chain rule and the product rule. This is because it is a multirule problem. Let’s do this example

    Multirule

    Compute \(\frac{d}{dx} \ e^{x^2 + x} \sin(x)\).

    The way I like to break this down is to consider a little rule and a big rule. In this case, the little rule is the chain rule problem \(\frac{d}{dx} \ e^{x^2 + x}\). If we do this problem, we see that \(f = e^x\), \(f' = e^x\), \(g = x^2 + x\) and \(g' = 2x + 1\). So we have

    \[\begin{equation*} \frac{d}{dx} \ e^{x^2 + x} = {\color{red} e^{x^2 + x} (2x + 1)}. \end{equation*}\]

    Now we are ready to do the big rule, which is the product rule. At this point we go back to the original problem \(\frac{d}{dx} \ e^{x^2 + x} \sin(x)\). For this product rule, we see \(f = e^{x^2 + x}\), \(g = \sin(x)\), \(g' = \cos(x)\). What is \({\color{red} f'}\)? Why, that’s what we just computed in the equation above! So \({\color{red} f' = e^{x^2 + x}(2x+1)}\). Putting this all together with the product rule \(f g' + g f'\), we have

    \[\begin{align*} \frac{d}{dx} \ e^{x^2 + x} \sin(x) & = f g' + g {\color{red} f'} \\ & = \boxed{e^{x^2 + x} \cos(x) + \sin(x) {\color{red} e^{x^2 + x} (2x + 1)}} . \end{align*}\]

    Multirule

    Compute \(\frac{d}{dx} \frac{x}{\sin(x^2 + x)}\).

    little chain rule: \(\frac{d}{dx} \sin(x^2 + x)\)

    \(\begin{array}{ll} f = \sin(x) & g = x^2 + x \\ f' = \cos(x) & g' = 2x + 1 \end{array}\)

    Result: \({\color{red} \cos(x^2 + x) \cdot (2x+1)}\)

    Big quotient rule (aka the whole problem):\(\frac{d}{dx} \frac{x}{\sin(x^2 + x)}\)

    \(\begin{array}{ll} f = x & g = \sin(x^2 + x) \\ f' = 1 & g' = {\color{red} \cos(x^2 + x) \cdot (2x+1)} \end{array}\)

    Result: \(\boxed{\frac{\sin(x^2 + x) \cdot 1 - x \cos(x^2 + x) \cdot (2x+1)}{(\sin(x^2+x))^2}}\)


    This page titled 3.13: Multirule Derivatives is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?