Simpson's Rule
( \newcommand{\kernel}{\mathrm{null}\,}\)
The Trapezoidal and Midpoint estimates provided better accuracy than the Left and Right endpoint estimates. It turns out that a certain combination of the Trapezoid and Midpoint estimates is even better.
Let f(x) be a function defined on [a,b]. Then
S(n)=13T(n)+23M(n)
where T(n) and M(n) are the Trapezoidal and Midpoint Estimates.
Geometrically, if n is an even number then Simpson's Estimate gives the area under the parabolas defined by connecting three adjacent points.
Let n be even then using the even subscripted x values for the trapezoidal estimate and the midpoint estimate, gives
S(n)=13[b−a2n(f(x0)+2f(x2)+...+f(x2n−2)+f(x2n))]+23[b−an(f(x1)f(x3)+f(x5)+...+f(x2n−1))]=b−a3n(f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+4f(x5)+...+2f(xn−2)+4f(xn−1)+f(xn))
Notice the "1 2 4 2 4 ... 2 4 2 4 1" pattern in the coefficients.
Use Simpson's Estimate to approximate
∫20ex2dx
Using n=6
Solution
We partition
0<1/3<2/3<1<4/3<5/3<2
and calculate
e02=1,e(13)2=1.12,e(23)2=1.56,e(1)2=2.72e(43)2=5.92,e(53)2=16.08,e(2)2=54.60
and put these into the formula for Simpson's Estimate (Equation 3)
2−06[1+2⋅1.12+4⋅1.56+2⋅2.72+4⋅5.92+2⋅16.08+54.60]=41.79
Approximate
∫6211+x3dx
Error in Simpson's Estimate
Without proof, we state:
Let M=max |f⁗(x)| and let Es be the error in using Simpson's estimate then
|Es|≤M(b−a)5180n4
Contributors and Attributions
- Larry Green (Lake Tahoe Community College)