Skip to main content
Mathematics LibreTexts

1.2.E: Angles and The Dot Product (Exercises)

  • Page ID
    31490
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Let \(\mathbf{x}=(3,-2), \mathbf{y}=(-2,5),\) and \(\mathbf{z}=(4,1) .\) Compute each of the following.
    (a) \(\mathbf{x} \cdot \mathbf{y}\)
    (b) \(2 \mathbf{x} \cdot \mathbf{y}\)
    (c) \(\mathbf{x} \cdot(3 \mathbf{y}-\mathbf{z})\)
    (d) \(-\mathbf{z} \cdot(\mathbf{x}+5 \mathbf{y})\)

    Answer

    (a) -16

    (b) -32

    (c) -58

    (d) 5

    Exercise \(\PageIndex{2}\)

    Let \(\mathbf{x}=(3,-2,1), \mathbf{y}=(-2,3,5),\) and \(\mathbf{z}=(-1,4,1) .\) Compute each of the following.
    (a) \(\mathbf{x} \cdot \mathbf{y}\)
    (b) \(2 \mathbf{x} \cdot \mathbf{y}\)
    (c) \(\mathbf{x} \cdot(3 \mathbf{y}-\mathbf{z})\)
    (d) \(-\mathbf{z} \cdot(\mathbf{x}+5 \mathbf{y})\)

    Exercise \(\PageIndex{3}\)

    Let \(\mathbf{x}=(3,-2,1,2), \mathbf{y}=(-2,3,4,-5),\) and \(\mathbf{z}=(-1,4,1,-2) .\) Compute each of the following.
    (a) \(\mathbf{x} \cdot \mathbf{y}\)
    (b) \(2 \mathbf{x} \cdot \mathbf{y}\)
    (c) \(\mathbf{x} \cdot(3 \mathbf{y}-\mathbf{z})\)
    (d) \(-\mathbf{z} \cdot(\mathbf{x}+5 \mathbf{y})\)

    Answer

    (a) -18

    (b) -36

    (c) -40

    (d) -126

    Exercise \(\PageIndex{4}\)

    Find the angles between the following pairs of vectors. First find your answers in radians and then convert to degrees.
    (a) \(\mathbf{x}=(1,2), \mathbf{y}=(2,1)\)
    (b) \(\mathbf{z}=(3,1), \mathbf{w}=(-3,1)\)
    (c) \(\mathbf{x}=(1,1,1), \mathbf{y}=(-1,1,-1)\)
    (d) \(\mathbf{y}=(-1,2,4), \mathbf{z}=(2,3,-1)\)
    (e) \(\mathbf{x}=(1,2,1,2), \mathbf{y}=(2,1,2,1)\)
    (f) \(\mathbf{x}=(1,2,3,4,5), \mathbf{z}=(5,4,3,2,1)\)

    Answer

    (a) 0.6435 radians, or \(36.87^{\circ}\)

    (c) 1.9106 radians, or \(109.47^{\circ}\)

    (e) 0.6435 radians, or \(36.87^{\circ}\)

    Exercise \(\PageIndex{5}\)

    The three points \((2,1),(1,2),\) and \((-2,1)\) determine a triangle in \(\mathbb{R}^{2} .\) Find the measure of its three angles and verify that their sum is \(\pi\).

    Answer

    The angle at vertex (−2,1) is 0.3218 radians, at vertex (1,2) is 2.0344 radians, and at vertex (2,1) is \(\frac{\pi}{4}\) radians.

    Exercise \(\PageIndex{6}\)

    Given three points \(\mathbf{p}, \mathbf{q},\) and \(\mathbf{r}\) in \(\mathbb{R}^{n},\) the vectors \(\mathbf{q}-\mathbf{p}, \mathbf{r}-\mathbf{p},\) and \(\mathbf{q}-\mathbf{r}\) describe the sides of the triangle with vertices at \(\mathbf{p}, \mathbf{q},\) and \(\mathbf{r} .\) For each of the following, find the measure of the three angles of the triangle with vertices at the given points.
    (a) \(\mathbf{p}=(1,2,1), \mathbf{q}=(-1,-1,2), \mathbf{r}=(-1,3,-1)\)
    (b) \(\mathbf{p}=(1,2,1,1), \mathbf{q}=(-1,-1,2,3), \mathbf{r}=(-1,3,-1,2)\)

    Exercise \(\PageIndex{7}\)

    For each of the following, find the angles between the given vector and the coordinate axes.
    (a) \(\mathbf{x}=(-2,3)\)
    (b) \(\mathbf{w}=(-1,2,1)\)
    (c) \(\mathbf{y}=(2,3,1,-1)\)
    (d) \(\mathbf{x}=(1,2,3,4,5)\)

    Answer

    (a) 2.1588 radians; 0.5880 radians

    (b) 1.9913 radians; 0.6155 radians; 1.1503 radians

    (c) 1.0282 radians; 0.6847 radians; 1.3096 radians; 1.8320 radians

    (d) 1.4355 radians; 1.2977 radians; 1.1543 radians; 1.011 radians; 0.8309 radians

    Exercise \(\PageIndex{8}\)

    For each of the following, find the coordinate of \(\mathbf{x}\) in the direction of \(\mathbf{y}\) and the projection \(\mathbf{w}\) of \(\mathbf{x}\) onto \(\mathbf{y} .\) In each case verify that \(\mathbf{y} \perp(\mathbf{x}-\mathbf{w})\).
    (a) \(\mathbf{x}=(-2,4), \mathbf{y}=(4,1)\)
    (b) \(\mathbf{x}=(4,1,4), \mathbf{y}=(-1,3,1)\)
    (c) \(\mathbf{x}=(-4,-3,1), \mathbf{y}=(1,-1,6)\)
    (d) \(\mathbf{x}=(1,2,4,-1), \mathbf{y}=(2,-1,2,3)\)

    Answer

    (a) Coordinate: \(-\frac{4}{\sqrt{17}}\); Projection: \(\left(-\frac{16}{17},-\frac{4}{17}\right)\)

    (b) Coordinate: \(\frac{3}{\sqrt{11}}\); Projection: \(\left(-\frac{3}{11}, \frac{9}{11}, \frac{3}{11}\right)\)

    (c) Coordinate: \(\frac{5}{\sqrt{38}}\); Projection: \(\left(\frac{5}{38},-\frac{5}{38}, \frac{15}{19}\right)\)

    (d) Coordinate: \(\frac{5}{3 \sqrt{2}}\); Projection: \(\left(\frac{5}{9},-\frac{5}{18}, \frac{5}{9}, \frac{5}{6}\right)\)

    Exercise \(\PageIndex{9}\)

    Verify properties (1.2.5) through (1.2.11) of the dot product.

    Exercise \(\PageIndex{10}\)

    If \(\mathbf{w}\) is the projection of \(\mathbf{x}\) onto \(\mathbf{y},\) verify that \(\mathbf{y}\) is orthogonal to \(\mathbf{x}-\mathbf{w}\).

    Exercise \(\PageIndex{11}\)

    Write \(\mathbf{x}=(1,2,-3)\) as the sum of two vectors, one parallel to \(\mathbf{y}=(2,3,1)\) and the other orthogonal to \(\mathbf{y}\).

    Answer

    \(\mathbf{x}=\left(\frac{5}{7}, \frac{15}{14}, \frac{5}{14}\right)+\left(\frac{2}{7}, \frac{13}{14},-\frac{47}{14}\right)\)

    Exercise \(\PageIndex{12}\)

    Suppose \(\mathbf{x}\) is a vector with the property that \(\mathbf{x} \cdot \mathbf{y}=0\) for all vectors \(\mathbf{y}\) in \(\mathbb{R}^{n}, \mathbf{y} \neq \mathbf{x}\). Show that it follows that \(\mathbf{x}=0\).


    This page titled 1.2.E: Angles and The Dot Product (Exercises) is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.