1.5.E: Linear and Affine Functions (Exercises)
- Page ID
- 77686
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
Let \(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\) be vectors in \(\mathbb{R}^{m}\) and define \(L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\) by
\[ L(\mathbf{x})=\left(\mathbf{a}_{1} \cdot \mathbf{x}, \mathbf{a}_{2} \cdot \mathbf{x}, \ldots, \mathbf{a}_{n} \cdot \mathbf{x}\right). \nonumber \]
Show that \(L\) is linear. What does \(L\) look like in the special cases
- \(m=n=1 ?\)
- \(n=1 ?\)
- \(m=1 ?\)
Exercise \(\PageIndex{2}\)
For each of the following functions \(f\), find the dimension of the domain space, the dimension of the range space, and state whether the function is linear, affine, or neither.
- \(f(x, y)=(3 x-y, 4 x, x+y)\)
- \(f(x, y)=(4 x+7 y, 5 x y)\)
- \(f(x, y, z)=(3 x+z, y-z, y-2 x)\)
- \(f(x, y, z)=(3 x-4 z, x+y+2 z)\)
- \(f(x, y, z)=\left(3 x+5, y+z, \frac{1}{x+y+z}\right)\)
- \(f(x, y)=3 x+y-2\)
- \(f(x)=(x, 3 x)\)
- \(f(w, x, y, z)=(3 x, w+x-y+z-5)\)
- \(f(x, y)=(\sin (x+y), x+y)\)
- \(f(x, y)=\left(x^{2}+y^{2}, x-y, x^{2}-y^{2}\right)\)
- \(f(x, y, z)=(3 x+5, y+z, 3 x-z+6, z-1)\)
- Answer
-
(a) Dimension of the domain space = 2; dimension of the range space = 3; \(f\) is linear
(b) Dimension of the domain space = 2; dimension of the range space = 2; \(f\) is neither linear nor affine
(c) Dimension of the domain space = 3; dimension of the range space = 3; \(f\) is linear
(d) Dimension of the domain space = 3; dimension of the range space = 2; \(f\) is linear
(e) Dimension of the domain space = 3; dimension of the range space = 4; \(f\) is affine
(f) Dimension of the domain space = 2; dimension of the range space = 1; \(f\) is affine
(g) Dimension of the domain space = 1; dimension of the range space = 2; \(f\) is linear
(h) Dimension of the domain space = 4; dimension of the range space = 2; \(f\) is linear
(i) Dimension of the domain space = 2; dimension of the range space = 2; \(f\) is neither linear nor affine
(j) Dimension of the domain space = 2; dimension of the range space = 3; \(f\) is neither linear nor affine
Exercise \(\PageIndex{3}\)
For each of the following linear functions \(L\), find a matrix \(M\) such that \(L(\mathbf{x})=M \mathbf{x}\).
- \(L(x, y)=(x+y, 2 x-3 y)\)
- \(L(w, x, y, z)=(x, y, z, w)\)
- \(L(x)=(3 x, x, 4 x)\)
- \(L(x)=-5 x\)
- \(L(x, y, z)=4 x-3 y+2 z\)
- \(L(x, y, z)=(x+y+z, 3 x-y, y+2 z)\)
- \(L(x, y)=(2 x, 3 y, x+y, x-y, 2 x-3 y)\)
- \(L(x, y)=(x, y)\)
- \(L(w, x, y, z)=(2 w+x-y+3 z, w+2 x-3 z)\)
- Answer
-
(a) \(M=\left[\begin{array}{rr}
1 & 1 \\
2 & -3
\end{array}\right]\)(b) \(M=\left[\begin{array}{rrrr}
2 & 1 & -1 & 3 \\
1 & 2 & 0 & -3
\end{array}\right]\)(c) \(M=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]\)(d) \(M=[-5]\)
(e) \(M=\left[\begin{array}{lll}
4 & -3 & 2
\end{array}\right]\)(f) \(M=\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & -1 & 0 \\
0 & 1 & 2
\end{array}\right]\)(g) \(M=\left[\begin{array}{rr}
2 & 0 \\
0 & 3 \\
1 & 1 \\
1 & -1 \\
2 & -3
\end{array}\right]\)(h) \(M=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)(i) \(M=\left[\begin{array}{rrrr}
2 & 1 & -1 & 3 \\
1 & 2 & 0 & -3
\end{array}\right]\)
Exercise \(\PageIndex{4}\)
For each of the following affine functions \(A\), find a matrix \(M\) and a vector \(\mathbf{b}\) such that \(A(\mathbf{x})=M \mathbf{x}+\mathbf{b}\).
- \(A(x, y)=(3 x+4 y-6,2 x+y-3)\)
- \(A(x)=3 x-4\)
- \(A(x, y, z)=(3 x+y-4, y-z+1,5)\)
- \(A(w, x, y, z)=(1,2,3,4)\)
- \(A(x, y, z)=3 x-4 y+z-1\)
- \(A(x)=(3 x,-x, 2)\)
- \(A\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+1, x_{1}-x_{3}+1, x_{2}+x_{3}\right)\)
Exercise \(\PageIndex{5}\)
Multiply the following.
(a) \( \left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] \)
(b) \(\left[\begin{array}{rr}
-1 & 2 \\
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{r}
3 \\
-1
\end{array}\right]\)
(c) \(\left[\begin{array}{lll}
1 & 2 & 1-3
\end{array}\right]\left[\begin{array}{r}
2 \\
3 \\
-2 \\
1
\end{array}\right]\)
(d) \(\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
2
\end{array}\right]\)
- Answer
-
(a) \(\left[\begin{array}{r}
-4 \\
4
\end{array}\right]\)(b) \(\left[\begin{array}{c}
-5 \\
11 \\
-4
\end{array}\right]\)(c) \([3]\)
(d) \(\left[\begin{array}{c}
2 \\
10 \\
3
\end{array}\right]\)
Exercise \(\PageIndex{6}\)
Let \(L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be the linear function that maps a vector \(\mathbf{x}=(x, y)\) to its reflection across the horizontal axis. Find the matrix \(M\) such that \(L(\mathbf{x})=M \mathbf{x}\) for all \(\mathbf{x}\) in \(\mathbb{R}^{2}\).
Exercise \(\PageIndex{7}\)
Let \(L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be the linear function that maps a vector \(\mathbf{x}=(x, y)\) to its reflection across the line \(y=x\). Find the matrix \(M\) such that \(L(\mathbf{x})=M \mathbf{x}\) for all \(\mathbf{x}\) in \(\mathbb{R}^{2}\).
- Answer
-
\(M=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\)
Exercise \(\PageIndex{8}\)
Let \(L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be the linear function that maps a vector \(\mathbf{x}=(x, y)\) to its reflection across the line \(y=-x\). Find the matrix \(M\) such that \(L(\mathbf{x})=M \mathbf{x}\) for all \(\mathbf{x}\) in \(\mathbb{R}^{2}\).
- Answer
-
\(M=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]\)
Exercise \(\PageIndex{9}\)
Let \(R_{\theta}\) be defined as in (1.5.12).
- Show that for any \(\mathbf{x}\) in \(\mathbb{R}^{2}\), \(\left\|R_{\theta}(\mathbf{x})\right\|=\|\mathbf{x}\| \).
- For any \(\mathbf{x}\) in \(\mathbb{R}^{2}\), let \( \alpha \) be the angle between \(\mathbf{x}\) and \(R_{\theta}(\mathbf{x})\). Show that \(\cos (\alpha)= \cos(\theta)\). Together with (a), this verifies that \(R_{\theta}(\mathbf{x})\) is the rotation of \(\mathbf{x}\) through an angle θ.
Exercise \(\PageIndex{10}\)
Let \(S_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be the linear function that rotates a vector \(\mathbf{x}\) clockwise through an angle \(\theta\). Find the matrix \(M\) such that \(S_{\theta}(\mathbf{x})=M \mathbf{x}\) for all \(\mathbf{x}\) in \(\mathbb{R}^{2}\).
- Answer
-
\(M=\left[\begin{array}{rr}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]\)
Exercise \(\PageIndex{11}\)
Given a function \(f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\), we call the set
\[ \left\{\mathbf{y}: \mathbf{y}=f(\mathbf{x}) \text { for some } \mathbf{x} \text { in } \mathbb{R}^{m}\right\} \nonumber \]
the image, or range, of \(f\).
- Suppose \(L: \mathbb{R} \rightarrow \mathbb{R}^{n}\) is linear with \(L(1) \neq \mathbf{0}\). Show that the image of \(L\) is a line in \(\mathbb{R}^{n}\) which passes through \(\mathbf{0}\).
- Suppose \(L: \mathbb{R}^2 \rightarrow \mathbb{R}^{n}\) is linear and \(L\left(\mathbf{e}_{1}\right)\) and \(L\left(\mathbf{e}_{2}\right)\) are linearly independent. Show that the image of \(L\) is a plane in \(\mathbb{R}^{n}\) which passes through \(\mathbf{0}\).
Exercise \(\PageIndex{12}\)
Given a function \(f: \mathbb{R}^{m} \rightarrow \mathbb{R}\), we call the set
\[ \left\{\left(x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}\right): x_{m+1}=f\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right\} \nonumber \]
the graph of \(f\). Show that if \(L: \mathbb{R}^{m} \rightarrow \mathbb{R}\) is linear, then the graph of \(L\) is a hyperplane in \(\mathbb{R}^{m+1}\).