2.4: Corollaries of the Fundamental Theorem of Arithmetic
- Page ID
- 60303
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The unique factorization theorem is intuitive and easy to use. It is very effective in proving a great number of results. Some of these results can be proved with a little more effort without using the theorem (see exercise 2.5 for an example).
Corollary 2.15
For all \(a\) and \(b\) in \(\mathbb{Z}\) not both equal to \(0\), we have that \(\gcd(a, b) \cdot \mbox{lcm} (a, b) = ab\) up to units.
- Proof
-
If \(c\) is a divisor or multiple of \(a\), then so is \(-c\). So \(a\) and \(-a\) have the same divisors and multiples. Therefore without loss of generality we may assume that \(a\) and \(b\) are positive.
Given two positive numbers \(a\) and \(b\), let \(P = \{p_{i}\}^{k}_{i=1}\) be the list of all prime numbers occurring in the unique factorization of \(a\) or \(b\). We then have:
\[\begin{array}{ccc} {a = \prod_{i=1}^{s} p_{i}^{k_{i}}}&{and}&{b = \prod_{i=1}^{s} p_{i}^{l_{i}}} \end{array} \nonumber\]
where \(k_{i}\) and \(l_{i}\) in \(\mathbb{N} \cup \{0\}\). Now define:
\[\begin{array} {ccc} {m_{i} = \mbox{ min} (k_{i},l_{i})}&{and}&{M_{i} = \mbox{ max} (k_{i},l_{i})} \end{array} \nonumber\]
and let the numbers \(m\) and \(M\) be given by
\[\begin{array}{ccc} {m = \prod_{i=1}^{s} p_{i}^{m_{i}}}&{and}&{M = \prod_{i=1}^{s} p_{i}^{M_{i}}} \end{array} \nonumber\]
Since \(m_{i} + M_{i} = k_{i} + l_{i}\), it is clear that the multiplication \(m \cdot M\) yields \(ab\).
Now all we need to do, is showing that \(m\) equals \(\gcd (a,b)\) and that \(M\) equals \(\mbox{lcm}(a,b)\). Clearly \(m\) divides both \(a\) and \(b\). On the other hand, any integer greater than \(m\) has a unique factorization that either contains a prime not in the list \(P\) and therefore divides neither \(a\) nor \(b\), or, if not, at least one of the primes in \(P\) in its factorization has a power greater than \(m_{i}\). In the last case \(m\) is not a divisor of at least one of \(a\) and \(b\). The proof that \(M\) equals \(\mbox{lcm} (a,b)\) is similar.
A final question one might ask, is how many primes are there? In other words, how long can the list of primes in a factorization be? Euclid provided the answer around 300BC.
Theorem 2.16 (Infinity of Primes)
There are infinitely many primes.
- Proof
-
Suppose the list \(P\) of all primes is finite, so that \(P = \{p_{i}\}^{n}_{i=1}\). Define the integer \(d\) as the product of all primes (to the power \(1\)):
\[d = \prod_{i=1}^{n} p_{i} \nonumber\]
If \(d+1\) is a prime, we have a contradiction. So \(d+1\) must be divisible by a prime \(p_{i}\) in \(P\). But then we have
\[\begin{array} {ccc} {p_{i}|d}&{and}&{p_{i}+1|d} \end{array} \nonumber\]
But since \((d+1)(1)+d(-1) = 1\), Bezout's lemma implies that \(\gcd (d,d+1) = 1\), which contradicts our earlier conclusion \(p_{i} | d\)
One the best known consequences of the fundamental theorem of arithmetic is probably the theorem that follow below. A special case, namely \(\sqrt{2}\) is irrational (see theorem 1.11), was known to Pythagoras in the 6th century BC.
Theorem 2.17
Let \(n > 0\) and \(k > 1\) be integers. Then \(n^{\frac{1}{k}}\) is either an integer or irrational.
- Proof
-
Assume \(n^{\frac{1}{k}}\) is rational. That is: suppose that there are integers \(a\) and \(b\) such that
\[n^{\frac{1}{k}} = \frac{a}{b} \Rightarrow n \cdot b^k = a^k \nonumber\]
Divide out any common divisors of \(a\) and \(b\), so that \(\gcd (a,b) = 1\). Then by the fundamental theorem od arithmetic:
\[n \prod_{i=1}^{s} p_{i}^{km_{i}} = \prod_{i=s+1}^{r} p_{i}^{kl_{i}} \nonumber\]
Therefore, in the factorization of \(n\), each prime \(p_{i}\) must occur with a power that is a non-negative multiple of \(k\). Because \(\gcd (a,b) = 1\), the prime \(p_{i}\) on the left and right side are distinct. This is only possible if \(\prod_{i=1}^{s} p_{i}^{km_{i}}\) equals \(1\). But then \(n\) is the k-th power of an integer.
Lemma 2.18
We have
\[\forall i \in \{1,\cdots, n\} : \gcd (a_{i},b) = 1 \Leftrightarrow \gcd (\prod_{i=1}^{n} a_{i},b) = 1 \nonumber\]
- Proof
-
The easiest way to see this uses prime power fractorization. If \(\gcd (\prod_{i=1}^{n} a_{i},b) = d > 1\), then \(d\) contains a factor \(p > 1\) that is a prime. Since \(p\) divides \(\prod_{i=1}^{n} a_{i}\), at least one of the \(a_{i}\) must contain (by Corollary 2.11) a factor \(p\). Since \(p\) also divides \(b\), this contradicts the assumption that \(\gcd (a_{i},b) = 1\).
Vice versa, if \(\gcd(a_{i} , b) = d > 1\) for some \(i\), then also \(\prod_{i=1}^{n} a_{i}\) is divisible by \(d\).