Skip to main content
Mathematics LibreTexts

6.4: Reduction to Cases

  • Page ID
    83429
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Fact \(\PageIndex{1}\)

    The following logical equivalence holds:

    \begin{equation*} (s_1 \lor s_2 \lor \cdots \lor s_m) \rightarrow t \; \Leftrightarrow \; (s_1 \rightarrow t) \land (s_2 \rightarrow t) \land \cdots \land (s_m \rightarrow t)\text{.} \end{equation*}

    If

    \begin{equation*} C_1 \lor C_2 \lor \cdots \lor C_m \end{equation*}

    is a tautology, then

    \begin{equation*} P \; \Leftrightarrow \; P \land (C_1 \lor \cdots \lor C_m) \; \Leftrightarrow \; (P \land C_1) \lor \cdots \lor (P \land C_m)\text{.} \end{equation*}

    By substitution and Fact \(\PageIndex{1}\),

    \begin{equation*} P \rightarrow Q \; \Leftrightarrow \; (P \land C_1 \rightarrow Q) \land \cdots \land (P \land C_m \rightarrow Q). \end{equation*}

    A conjunction is only true if each “factor” in the conjunction is true, so the conjunction on the right above can only be a tautology if each conditional \(P \land C_1 \rightarrow Q\) is a tautology. Therefore, when we have a collection of statements \(C_1,\ldots ,C_m\) so that

    \begin{equation*} C_1 \lor C_2 \lor \cdots \lor C_m \end{equation*}

    is a tautology, we can prove \(P \rightarrow Q \) by instead proving each of \(P \land C_i \Rightarrow Q\) one at a time. This is also valid for universal statements, since \(\forall\) distributes over \(\land\) (Proposition 4.2.2).

    Now, having to prove many slightly more complicated statements \(P \land C_i \Rightarrow Q\) seems like a lot more work than just proving the single simple statement \(P \rightarrow Q\) — why would we want to go to all this extra effort?

    Idea \(\PageIndex{1}\)

    Each case statement \(C_i\) provides extra information that can be combined with the assumption that \(P\) is true to arrive at the conclusion that \(Q\) must also be true.

    Check your understanding. Attempt Exercise 6.12.7.


    This page titled 6.4: Reduction to Cases is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.