6.5: Statements Involving Disjunction
- Page ID
- 83430
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)First, let's consider a conditional statement with a disjunction on the hypothesis side. To prove a statement of the form \((P_1 \lor P_2) \Rightarrow Q\text{,}\) we can use Fact 6.4.1 to decompose into two conditionals:
Appealing to the properties of conjunction, as in our discussion of reduction to cases, we see that we can prove \(P_1 \Rightarrow Q\) and \(P_2 \Rightarrow Q\) by separate proofs.
What about a conditional with a disjunction on the conclusion side? To prove a statement of the form \(P \Rightarrow (Q_1 \lor Q_2)\text{,}\) we can again reduce to cases, but in a sort of tricky way. For any statement, there are only two possibilities — either the statement is true or it is false. (See Basic Tautology 3 in Example 1.4.1. Apply this fact to one of the statements we are trying to prove.
To prove a statement of the form \(P \Rightarrow (Q_1 \lor Q_2)\text{,}\) start by assuming that \(P\) is true and \(Q_1\) is false. Try to show that these assumptions lead to \(Q_2\) being true.
There are only two possibilities for \(Q_1\text{:}\) either it is true or it is false. If \(Q_1\) is true, then \(Q_1 \lor Q_2\) is already true, regardless of the truth values of \(P\) and \(Q_2\text{,}\) so there is nothing to prove in this case. On the other hand, if \(Q_1\) is false, the only way \(Q_1 \lor Q_2\) could be true is if \(Q_2\) is true.
- Also see Exercise 2.5.3.
- Of course, you can swap the roles of \(Q_1\) and \(Q_2\) above: you could also start by assuming that \(P\) is true and \(Q_2\) is false, then try to show that this leads to \(Q_1\) being true.
- Another strategy is to attempt a proof by contradiction (discussed in Section 6.9 below). By DeMorgan, \(\neg(Q_1 \lor Q_2) \Leftrightarrow \neg Q_1 \land \neg Q_2\text{,}\) so for this strategy, you should start by assuming that \(P\) is true and both \(Q_1\) and \(Q_2\) are false. Then, try to arrive at a contradiction.
Prove: Every odd number is either \(1\) more or \(3\) more than a multiple of \(4\text{.}\)
Solution
Let \(P(n)\) represent the predicate “\(n\) is odd”, let \(Q_1(n)\) represent the predicate “\(n\) is \(1\) more than a multiple of \(4\)”, and let \(Q_2(n)\) represent the predicate “\(n\) is \(3\) more than a multiple of \(4\)”, each with domain the integers.
Start by assuming that \(n\) is an odd number that is not \(1\) more than a multiple of \(4\text{.}\) We must now try to show that \(n\) is \(3\) more than a multiple of \(4\text{.}\) We know that \(n\) is odd, so there exists a number \(m\) such that \(n = 2m + 1\text{.}\) However, since \(n\) is not \(1\) more than a multiple of \(4\text{,}\) \(2m\) cannot be a multiple of \(4\text{,}\) and so \(m\) cannot be a multiple of \(2\text{.}\) Therefore, \(m\) is also odd, and so there exists another number \(\ell\) such that \(m = 2\ell + 1\text{.}\) Then
which says that \(n\) is \(3\) more than a multiple of \(4\text{,}\) as desired.