12.6: Exercises
- Page ID
- 92668
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Prove: If \(B\) is finite and \(A \subseteq B\text{,}\) then \(A\) is finite and \(\vert A \vert \le \vert B \vert\text{.}\)
Suppose that \(A\text{,}\) \(B\text{,}\) and \(C\) are finite subsets of a universal set \(U\text{.}\)
- Prove: If \(A\) and \(B\) are disjoint, then \(\vert A \sqcup B \vert = \vert A \vert + \vert B \vert\text{.}\)
- Prove: \(\vert A \cup B \vert = \vert A \vert + \vert B \vert - \vert A \cap B \vert\text{.}\)
- Hint.
-
See Exercise 9.9.5, and use the equality from Task a.
- Determine a similar formula for \(\vert A \cup B \cup C \text{.}\)
- Hint.
-
Draw a Venn diagram first.
Use induction to prove directly that if \(\vert A \vert = n\) then \(\vert \mathscr{P}(A) \vert = 2^n\text{.}\) Use Worked Example 12.2.1 as a model for your proof of the induction step.
Prove: If \(\vert A \vert = \infty\) and \(A \subseteq B\text{,}\) then \(\vert B \vert = \infty\text{.}\)
Prove Fact 12.3.2.
Combine Example 12.3.3 and Example 12.3.10 to verify that the unit interval \((0,1)\) and \(\mathbb{R}\) have the same size.
- Hint.
-
First map the punctured circle \(\hat{S}\) onto some open interval in the \(x\)-axis by “unrolling” \(\hat{S}\text{.}\)
Use Example 12.3.3 and the function \(f(x) = \tan x\) to prove that the interval \((-\pi/2,\pi/2)\) and \(\mathbb{R}\) have the same size.
- Hint.
-
The function \(f(x) = \tan x\) is not one-to-one, but it becomes one-to-one if you restrict its domain to an appropriate interval
Prove that if \(A\) and \(B\) have the same size, then so do \(\mathscr{P}(A)\) and \(\mathscr{P}(B)\text{.}\)
- Hint.
-
See Exercise 10.7.19.
Suppose \(A\) is a set with \(\vert A \vert = n\text{.}\) Then we can enumerate its elements as \(A = \{a_1,a_2,\ldots ,a_n\}\text{.}\)
- Construct a bijection from the power set of \(A\) to the set of words in the alphabet \(\Sigma = \{T,F\}\) of length \(n\text{.}\)
Note that there are two tasks required here.
- Explicitly describe a function \(f: \mathscr{P}(A) \rightarrow \Sigma^\ast_n\) by describing the input-output rule: give a detailed description of how, given a subset \(B \subseteq A\text{,}\) the word \(f(B)\) should be produced.
- Prove that your function \(f\) is a bijection.
- Hint.
-
When determining the input-output rule for your function \(f: \mathscr{P}(A) \rightarrow \Sigma^\ast_n\text{,}\) think of how one might construct an arbitrary subset of \(A\text{,}\) and then relate that process to a sequence of answers to \(n\) true/false questions.
- Use Task a to determine the cardinality of \(\mathscr{P}(A)\text{.}\) Explain.
- Hint
-
See Note 1.3.1.
- Suppose \(k\) is some fixed (but unknown) integer, with \(0 \le k \le n\text{.}\) Let \(\mathscr{P}(A)_k\) represent the subset of \(\mathscr{P}(A)\) consisting of all subsets of \(A\) that have exactly \(k\) elements. Describe how your bijection from Task a, could be used to count the elements of \(\mathscr{P}(A)_k\text{.}\)
- Hint.
-
Consider how restricting the domain might help.