Skip to main content
Mathematics LibreTexts

7.1: Introduction

  • Page ID
    91087
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    SOME OF THE MOST INTERESTING PHENOMENA in the world are modeled by nonlinear systems. These systems can be modeled by differential equations when time is considered as a continuous variable or difference equations when time is treated in discrete steps. Applications involving differential equations can be found in many physical systems such as planetary systems, weather prediction, electrical circuits, and kinetics. Even in some simple dynamical systems a combination of damping and a driving force can lead to chaotic behavior. Namely, small changes in initial conditions could lead to very different outcomes. In this chapter we will explore a few different nonlinear systems and introduce some of the tools needed to investigate them. These tools are based on some of the material in Chapters 2 and 3 for linear systems of differential equations.

    Nonlinear differential equations are either integrable, but difficult to solve, or they are not integrable and can only be solved numerically. We will see that we can sometimes approximate the solutions of nonlinear systems with linear systems in small regions of phase space and determine the qualitative behavior of the system without knowledge of the exact solution.

    Nonlinear problems occur naturally. We will see problems from many of the same fields we explored in Section 6.2. We will concentrate mainly on continuous dynamical systems. We will begin with a simple population model and look at the behavior of equilibrium solutions of first order autonomous differential equations. We will then look at nonlinear systems in the plane, such as the nonlinear pendulum and other nonlinear oscillations. We will conclude by discussing a few other interesting physical examples stressing some of the key ideas of nonlinear dynamics.


    This page titled 7.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?