Skip to main content
Mathematics LibreTexts

5.1: Problem Set

  • Page ID
    24159
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    EXERCISE \(\PageIndex{1}\)

    Suppose A is a \(n \times n\) matrix of real numbers. Show that if \(\lambda\) is an eigenvalue of A with eigenvector e, then \(\bar{\lambda}\) is an eigenvalue of A with eigenvector \(\bar{e}\).

    EXERCISE \(\PageIndex{2}\)

    Consider the matrices:

    \(A_{1} = \begin{pmatrix} {0}&{-w}\\ {w}&{0} \end{pmatrix}, A_{2} = \begin{pmatrix} {0}&{w}\\ {-w}&{0} \end{pmatrix}, w>0\)

    Sketch the trajectories of the associated linear autonomous ordinary differential equations:

    \(\begin{pmatrix} {\dot{x_{1}}}\\ {\dot{x_{2}}} \end{pmatrix} = A_{i}\begin{pmatrix} {x_{1}}\\ {x_{2}} \end{pmatrix}, i = 1, 2\)

    EXERCISE \(\PageIndex{3}\)

    Consider the matrices:

    \(A = \begin{pmatrix} {-1}&{-1}\\ {-9}&{-1} \end{pmatrix}\)

    (a) Show that the eigenvalues and eigenvectors are given by:

    \(-1-3i: \begin{pmatrix} {1}\\ {3i} \end{pmatrix} = \begin{pmatrix} {1}\\ {0} \end{pmatrix}+i\begin{pmatrix} {0}\\ {3} \end{pmatrix}\)

    \(-1+3i: \begin{pmatrix} {1}\\ {-3i} \end{pmatrix} = \begin{pmatrix} {1}\\ {0} \end{pmatrix}-i\begin{pmatrix} {0}\\ {3} \end{pmatrix}\)

    (b) Consider the four matrices:

    \(T_{1} = \begin{pmatrix} {1}&{0}\\ {0}&{-3} \end{pmatrix}\)

    \(T_{2} = \begin{pmatrix} {1}&{0}\\ {0}&{3} \end{pmatrix}\)

    \(T_{3} = \begin{pmatrix} {0}&{1}\\ {-3}&{0} \end{pmatrix}\)

    \(T_{4} = \begin{pmatrix} {0}&{1}\\ {3}&{0} \end{pmatrix}\)

    Compute \(\Lambda_{i} = T_{i}^{-1}AT_{i}, i = 1 \dots 4\).

    (c) Discuss the form of T in terms of the eigenvectors of A.

    EXERCISE \(\PageIndex{4}\)

    Consider the following two dimensional linear autonomous vector field:

    \(\begin{pmatrix} {\dot{x_{1}}}\\ {\dot{x_{2}}} \end{pmatrix} = \begin{pmatrix} {-2}&{1}\\ {-5}&{2} \end{pmatrix} \begin{pmatrix} {x_{1}}\\ {x_{2}} \end{pmatrix}, (x_{1}(0), x_{2}(0)) = (x_{10}, x_{20})\).

    Show that the origin is Lyapunov stable. Compute and sketch the trajectories.

    EXERCISE \(\PageIndex{5}\)

    Consider the following two dimensional linear autonomous vector field:

    \(\begin{pmatrix} {\dot{x_{1}}}\\ {\dot{x_{2}}} \end{pmatrix} = \begin{pmatrix} {1}&{2}\\ {2}&{1} \end{pmatrix} \begin{pmatrix} {x_{1}}\\ {x_{2}} \end{pmatrix}, (x_{1}(0), x_{2}(0)) = (x_{10}, x_{20})\).

    Show that the origin is a saddle. Compute the stable and unstable subspaces of the origin in the original coordinates, i.e. the \(x_{1}-x_{2}\) coordinates. Sketch the trajectories in the phase plane.

    EXERCISE \(\PageIndex{6}\)

    Compute \(e^{A}\), where

    \(A = \begin{pmatrix} {\lambda}&{1}\\ {0}&{\lambda} \end{pmatrix}\)

    Hint. Write

    \(A = \underbrace{\begin{pmatrix} {\lambda}&{0}\\ {0}&{\lambda} \end{pmatrix}}_{\equiv S}+\underbrace{\begin{pmatrix} {0}&{1}\\ {0}&{0} \end{pmatrix}}_{\equiv N}\)

    Then

    \(A \equiv S+N\), and NS = SN.

    Use the binomial expansion fo compute \((S + N)^n\), \(n \ge 1\),

    \((S + N)^n = \sum_{k=0}^{n} \begin{pmatrix} {n}\\ {k} \end{pmatrix} S^{k}N^{n-k}\),

    where

    \(\begin{pmatrix} {n}\\ {k} \end{pmatrix} = \frac{n!}{k!(n-k)!}\)

    and substitute the results into the exponential series.​​​​​​​

    ​​​​​​​


    This page titled 5.1: Problem Set is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Stephen Wiggins via source content that was edited to the style and standards of the LibreTexts platform.