Skip to main content
Mathematics LibreTexts

5.1: Problem Set

  • Page ID
    24159
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    EXERCISE \(\PageIndex{1}\)

    Suppose A is a \(n \times n\) matrix of real numbers. Show that if \(\lambda\) is an eigenvalue of A with eigenvector e, then \(\bar{\lambda}\) is an eigenvalue of A with eigenvector \(\bar{e}\).

    EXERCISE \(\PageIndex{2}\)

    Consider the matrices:

    \(A_{1} = \begin{pmatrix} {0}&{-w}\\ {w}&{0} \end{pmatrix}, A_{2} = \begin{pmatrix} {0}&{w}\\ {-w}&{0} \end{pmatrix}, w>0\)

    Sketch the trajectories of the associated linear autonomous ordinary differential equations:

    \(\begin{pmatrix} {\dot{x_{1}}}\\ {\dot{x_{2}}} \end{pmatrix} = A_{i}\begin{pmatrix} {x_{1}}\\ {x_{2}} \end{pmatrix}, i = 1, 2\)

    EXERCISE \(\PageIndex{3}\)

    Consider the matrices:

    \(A = \begin{pmatrix} {-1}&{-1}\\ {-9}&{-1} \end{pmatrix}\)

    (a) Show that the eigenvalues and eigenvectors are given by:

    \(-1-3i: \begin{pmatrix} {1}\\ {3i} \end{pmatrix} = \begin{pmatrix} {1}\\ {0} \end{pmatrix}+i\begin{pmatrix} {0}\\ {3} \end{pmatrix}\)

    \(-1+3i: \begin{pmatrix} {1}\\ {-3i} \end{pmatrix} = \begin{pmatrix} {1}\\ {0} \end{pmatrix}-i\begin{pmatrix} {0}\\ {3} \end{pmatrix}\)

    (b) Consider the four matrices:

    \(T_{1} = \begin{pmatrix} {1}&{0}\\ {0}&{-3} \end{pmatrix}\)

    \(T_{2} = \begin{pmatrix} {1}&{0}\\ {0}&{3} \end{pmatrix}\)

    \(T_{3} = \begin{pmatrix} {0}&{1}\\ {-3}&{0} \end{pmatrix}\)

    \(T_{4} = \begin{pmatrix} {0}&{1}\\ {3}&{0} \end{pmatrix}\)

    Compute \(\Lambda_{i} = T_{i}^{-1}AT_{i}, i = 1 \dots 4\).

    (c) Discuss the form of T in terms of the eigenvectors of A.

    EXERCISE \(\PageIndex{4}\)

    Consider the following two dimensional linear autonomous vector field:

    \(\begin{pmatrix} {\dot{x_{1}}}\\ {\dot{x_{2}}} \end{pmatrix} = \begin{pmatrix} {-2}&{1}\\ {-5}&{2} \end{pmatrix} \begin{pmatrix} {x_{1}}\\ {x_{2}} \end{pmatrix}, (x_{1}(0), x_{2}(0)) = (x_{10}, x_{20})\).

    Show that the origin is Lyapunov stable. Compute and sketch the trajectories.

    EXERCISE \(\PageIndex{5}\)

    Consider the following two dimensional linear autonomous vector field:

    \(\begin{pmatrix} {\dot{x_{1}}}\\ {\dot{x_{2}}} \end{pmatrix} = \begin{pmatrix} {1}&{2}\\ {2}&{1} \end{pmatrix} \begin{pmatrix} {x_{1}}\\ {x_{2}} \end{pmatrix}, (x_{1}(0), x_{2}(0)) = (x_{10}, x_{20})\).

    Show that the origin is a saddle. Compute the stable and unstable subspaces of the origin in the original coordinates, i.e. the \(x_{1}-x_{2}\) coordinates. Sketch the trajectories in the phase plane.

    EXERCISE \(\PageIndex{6}\)

    Compute \(e^{A}\), where

    \(A = \begin{pmatrix} {\lambda}&{1}\\ {0}&{\lambda} \end{pmatrix}\)

    Hint. Write

    \(A = \underbrace{\begin{pmatrix} {\lambda}&{0}\\ {0}&{\lambda} \end{pmatrix}}_{\equiv S}+\underbrace{\begin{pmatrix} {0}&{1}\\ {0}&{0} \end{pmatrix}}_{\equiv N}\)

    Then

    \(A \equiv S+N\), and NS = SN.

    Use the binomial expansion fo compute \((S + N)^n\), \(n \ge 1\),

    \((S + N)^n = \sum_{k=0}^{n} \begin{pmatrix} {n}\\ {k} \end{pmatrix} S^{k}N^{n-k}\),

    where

    \(\begin{pmatrix} {n}\\ {k} \end{pmatrix} = \frac{n!}{k!(n-k)!}\)

    and substitute the results into the exponential series.​​​​​​​

    ​​​​​​​


    This page titled 5.1: Problem Set is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Stephen Wiggins via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.