Skip to main content
Mathematics LibreTexts

9.2: Problem Set

  • Page ID
    24187
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Consider the following autonomous vector field on the plane:

    \(\dot{x} = \mu x-3y-x(x^2+y^2)^3\),

    \(\dot{y} = 3x+\mu y-y(x^2+y^2)^3\),

    where \(\mu\) is a parameter. Analyze possible bifurcations at (x,y) = (0, 0) for \(\mu\) in a neighborhood of zero. (Hint: use polar coordinates.)

    Exercise \(\PageIndex{2}\)

    These exercises are from the book of Marsden and McCracken8. Consider the following vector fields expressed in polar coordinates, i.e. \((r, \theta) \in \mathbb{R}^{+} \times \mathcal{S}^1\), depending on a parameter \(\mu\). Analyze the stability of the origin and the stability of all bifurcating periodic orbits as a function of \(\mu\).

    (a)

    \(\dot{r} = -r(r-\mu)^2\),

    \(\dot{\theta} = 1\).

    (b)

    \(\dot{r} = r(\mu-r^2)(2\mu-r^2)^2\),

    \(\theta{\theta} = 1\).

    (c)

    \(\dot{r} = r(r+\mu)(r-\mu)\),

    \(\dot{\theta} = 1\).

    (d)

    \(\dot{r} = \mu r(r^2-μ)\),

    \(\dot{\theta} = 1\).

    (e)

    \(\dot{r} = -\mu^{2}r(r+\mu)^2(r-\mu)^2\),

    \(\dot{\theta} = 1\).

    Exercise \(\PageIndex{3}\)

    Consider the following vector field:

    \(\dot{x} = \mu x-\frac{x^3}{2}+\frac{x^5}{4}, x \in \mathbb{R}\)

    where \(\mu\) is a parameter. Classify all bifurcations of equilibria and, in the process of doing this, determine all equilibria and their stability type.


    This page titled 9.2: Problem Set is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Stephen Wiggins via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.