Skip to main content
Mathematics LibreTexts

4.3: Transversals to Three Parallel Lines

  • Page ID
    34137
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In Chapter 1 we defined a transversal to be a line which intersects two other lines, We will now extend the definition to a line which intersects three other lines. In Figure \(\PageIndex{1}\), \(AB\) is a transversal to three lines.

    屏幕快照 2020-11-17 下午7.05.15.png
    Figure \(\PageIndex{1}\): \(AB\) is a transversal to three lines.

    If the three lines are parallel and we have two such transversals we may state the following theorem:

    Theorem \(\PageIndex{1}\)

    The line segments formed by two transversals crossing three parallel lines are proportional.

    In Figure \(\PageIndex{2}\), \(\dfrac{a}{b} = \dfrac{c}{d}\).

    屏幕快照 2020-11-17 下午7.09.40.png
    Figure \(\PageIndex{2}\): The line segments formed by the transversals are proportional.
    Example \(\PageIndex{1}\)

    Find \(x\):

    屏幕快照 2020-11-17 下午7.12.17.png

    Solution

    \[\begin{array} {rcl} {\dfrac{x}{3}} & = & {\dfrac{8}{4}} \\ {4x} & = & {24} \\ {x} & = & {6} \end{array}\]

    Check:

    屏幕快照 2020-11-17 下午7.12.37.png

    Answer: \(x = 6\).

    Proof of Theorem \(\PageIndex{1}\)

    Draw \(GB\) and \(HC\) parallel to \(DF\) (Figure \(\PageIndex{3}\)). The corresponding angles of the parallel lines are equal and so \(\triangle BCH \sim \triangle ABG\). Therefore

    \[\dfrac{BC}{AB} = \dfrac{CH}{BG}.\]

    Now \(CH = FE = c\) and \(BG = ED = d\) because they are the opposite sides of a parallelogram. Substituting, we obtain

    \[\dfrac{a}{b} = \dfrac{c}{d}.\]

    屏幕快照 2020-11-17 下午7.16.41.png
    Figure \(\PageIndex{3}\): Draw \(GB\) and \(HC\) parallel to \(DF\).
    Example \(\PageIndex{2}\)

    Find \(x\):

    屏幕快照 2020-11-17 下午7.18.35.png

    Solution

    \(\begin{array} {rcl} {\dfrac{x}{3}} & = & {\dfrac{2x + 2}{4x + 1}} \\ {(x)(4x + 1)} & = & {(3)(2x + 2)} \\ {4x^2 + x} & = & {6x + 6} \\ {4x^2 - 5x - 6} & = & {0} \\ {(x - 2)(4x + 3)} & = & {0} \end{array}\)

    \(\begin{array} {rcl} {x - 2} & = & {0} \\ {x} & = & {-2} \end{array}\) or \(\begin{array} {rcl} {4x + 3} & = & {0} \\ {4x} & = & {-3} \\ {x} & = & {-\dfrac{3}{4}} \end{array}\)

    We reject \(x = -\dfrac{3}{4}\) because \(BC = x\) cannot be negative.

    Check, \(x = 2\):

    屏幕快照 2020-11-17 下午7.27.25.png

    Answer: \(x = 2\).

    Problems

    1 - 6. Find \(x\):

    1.

    Screen Shot 2020-11-17 at 7.30.19 PM.png

    2.

    Screen Shot 2020-11-17 at 7.30.40 PM.png

    3.

    Screen Shot 2020-11-17 at 7.30.57 PM.png

    4.

    Screen Shot 2020-11-17 at 7.31.11 PM.png

    5.

    Screen Shot 2020-11-17 at 7.31.31 PM.png

    6.

    Screen Shot 2020-11-17 at 7.31.50 PM.png


    This page titled 4.3: Transversals to Three Parallel Lines is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Henry Africk (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?