Skip to main content
Mathematics LibreTexts

4.6: Distance from a Point to a Line

  • Page ID
    34140
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Suppose we are given a point \(P\) and a line \(\overleftrightarrow{AB}\) as in Figure \(\PageIndex{1}\). We would like to find the shortest line segment that can be drawn from \(P\) to \(\overleftrightarrow{AB}\).

    clipboard_e8584d79960bd82ce4866e3d5b8f633f0.png
    Figure \(\PageIndex{1}\): Point \(P\) and Line \(\overleftrightarrow{AB}\).

    First we will prove a theorem:

    Theorem \(\PageIndex{1}\)

    In a right triangle, the hypotenuse is larger than either leg. In Figure \(\PageIndex{1}\), \(c>a\) and \(c>b\). (The symbol ">" means "is greater than.")

    clipboard_e32fa56064d5fbe49ce3e3fb36326b367.png
    Figure \(\PageIndex{2}\): \(c\) is larger than either \(a\) or \(b\).
    Proof

    By the Pythagorean Theorem,

    \(c = \sqrt{a^2 + b^2} > \sqrt{a^2} = a.\)

    \(c = \sqrt{a^2 + b^2} > \sqrt{b^2} = b.\)

    Now we can give the answer to our question:

    Theorem \(\PageIndex{2}\)

    The perpendicular is the shortest line segment that can be drawn from a point to a straight line.

    In Figure \(\PageIndex{3}\) the shortest line segment from \(P\) to \(\overleftrightarrow{AB}\) is \(PD\). Any other line segment, such as \(PC\), must be longer.

    clipboard_e0e2f1e09c231f9151c40b04d084e3308.png
    Figure \(\PageIndex{3}\): \(PD\) is the shortest line segment from \(P\) to \(\overleftrightarrow{AB}\).
    Proof

    \(PC\) is the hypotenuse of right triangle \(PCD\). Therefore by Theorem \(\PageIndex{1}\), \(PC > PD\).

    We define the distance from a point to a line to be the length of the perpendicular.

    Example \(\PageIndex{1}\)

    Find the distance from \(P\) to \(\overleftrightarrow{AB}\):

    屏幕快照 2020-11-18 下午2.48.18.png

    Solution

    Draw \(PD\) perpendicular to \(\overleftrightarrow{AB}\) (Figure \(\PageIndex{4}\)). \(\triangle PCD\) is a \(30^{\circ}-60^{\circ}-90^{\circ}\) triangle.

    屏幕快照 2020-11-18 下午2.50.20.png
    Figure \(\PageIndex{4}\): Draw \(PD\) perpendicular to \(\overleftrightarrow{AB}\).

    \(\begin{array} {rcl} {\text{hyp}} & = & {2s} \\ {8} & = & {2(CD)} \\ {4} & = & {CD} \\ {L} & = & {s\sqrt{3}} \\ {PD} & = & {4\sqrt{3}} \end{array}\)

    Answer: \(4\sqrt{3}\)

    Problems

    1 - 6. Find the distance from \(P\) to \(\overleftrightarrow{AB}\):

    1.

    Screen Shot 2020-11-18 at 2.54.40 PM.png

    2.

    Screen Shot 2020-11-18 at 2.54.53 PM.png

    3.

    Screen Shot 2020-11-18 at 2.55.06 PM.png

    4.

    Screen Shot 2020-11-18 at 2.55.22 PM.png

    5.

    Screen Shot 2020-11-18 at 2.55.39 PM.png

    6.

    Screen Shot 2020-11-18 at 2.55.55 PM.png


    This page titled 4.6: Distance from a Point to a Line is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Henry Africk (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.