Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

17.3: Bolyai's construction

( \newcommand{\kernel}{\mathrm{null}\,}\)

Assume we need to construct a line thru P asymptotically parallel to the given line in the h-plane.

If A and B are ideal points of in the projective model, then we could simply draw the Euclidean line (PA). However the ideal points do not lie in the h-plane; therefore there is no way to use them in the construction.

In the following construction we assume that you know a compass-and-ruler construction of the perpendicular line; see Exercise 5.22.

Theorem 17.3.1 Bolyai's construction

  1. Drop a perpendicular from P to ; denote it by m. Let Q be the foot point of P on .
  2. Erect a perpendicular from P to m; denote it by n.
  3. Mark by R a point on distinct from Q.
  4. Drop a perpendicular from R to n; denote it by k.
  5. Draw the circle Γ with center P and the radius QR. Mark by T a point of intersection of Γ with k.
  6. The line (PT)h is asymptotically parallel to .

Exercise 17.3.1

Explain what happens if one performs the Bolyai construction in the Euclidean plane.

Answer

Add texts here. Do not delete this text first.

To prove that Bolyai’s construction gives the asymptotically parallel line in the h-plane, it is sufficient to show the following:

Theorem 17.3.1

Assume P, Q, R, S, T be points in h-plane such that

  • S(RT)h,
  • (PQ)h(QR)h,
  • (PS)h(PQ)h,
  • (RT)h(PS)h and
  • (PT)h and (QR)h are asymptotically parallel.

Then QRh=PTh.

Proof

We will use the projective model. Without loss of generality, we may assume that P is the center of the absolute. As it was noted on page , in this case the corresponding Euclidean lines are also perpendicular; that is, (PQ)(QR), (PS)(PQ), and (RT)(PS).

Let A be the common ideal point of (QR)h and (PT)h. Let B and C denote the remaining ideal points of (QR)h and (PT)h respectively.

Note that the Euclidean lines (PQ), (TR), and (CB) are parallel.

截屏2021-03-01 下午2.14.28.png

Therefore,

In particular,

ACAB=ATAR=APAQ.

It follows that

In particular, ATCPTCPA=ARBQRBQA. Applying the formula for h-distance 17.2.1, we get that QRh=PTh.


This page titled 17.3: Bolyai's construction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?