2.4: Properties of Matrix Multiplication
( \newcommand{\kernel}{\mathrm{null}\,}\)
As pointed out above, it is sometimes possible to multiply matrices in one order but not in the other order. However, even if both AB and BA are defined, they may not be equal.
Compare the products AB and BA, for matrices A=[1234],B=[0110]
Solution
First, notice that A and B are both of size 2×2. Therefore, both products AB and BA are defined. The first product, AB is
AB=[1234][0110]=[2143]
The second product, BA is
[0110][1234]=[3412]
Therefore, AB≠BA.
This example illustrates that you cannot assume AB=BA even when multiplication is defined in both orders. If for some matrices A and B it is true that AB=BA, then we say that A and B commute. This is one important property of matrix multiplication.
The following are other important properties of matrix multiplication. Notice that these properties hold only when the size of matrices are such that the products are defined.
The following hold for matrices A,B, and C and for scalars r and s,
A(rB+sC)=r(AB)+s(AC)(B+C)A=BA+CAA(BC)=(AB)C
- Proof
-
First we will prove (2.4.3). We will use Definition 2.3.1 and prove this statement using the ijth entries of a matrix. Therefore,
(A(rB+sC))ij=∑kaik(rB+sC)kj=∑kaik(rbkj+sckj)=r∑kaikbkj+s∑kaikckj=r(AB)ij+s(AC)ij=(r(AB)+s(AC))ij
Thus A(rB+sC)=r(AB)+s(AC) as claimed.
The proof of Equation (2.4.4) follows the same pattern and is left as an exercise.
Statement Equation (2.4.5) is the associative law of multiplication. Using Definition 2.3.1,
(A(BC))ij=∑kaik(BC)kj=∑kaik∑lbklclj=∑l(AB)ilclj=((AB)C)ij.
This proves (2.4.5).