Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3: Linear Transformations and Matrix Algebra

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Note \(\PageIndex{1}\)

    Learn about linear transformations and their relationship to matrices.

    In practice, one is often lead to ask questions about the geometry of a transformation: a function that takes an input and produces an output. This kind of question can be answered by linear algebra if the transformation can be expressed by a matrix.

    • 3.0: Prelude to Linear Transformations and Matrix Algebra
      In this chapter, we will be concerned with the relationship between matrices and transformations.
    • 3.1: Matrix Transformations
    • 3.2: One-to-one and Onto Transformations
      In this section, we discuss two of the most basic questions one can ask about a transformation: whether it is one-to-one and/or onto. For a matrix transformation, we translate these questions into the language of matrices.
    • 3.3: Linear Transformations
      In this section, we make a change in perspective. Suppose that we are given a transformation that we would like to study. If we can prove that our transformation is a matrix transformation, then we can use linear algebra to study it. This raises two important questions: (1) How can we tell if a transformation is a matrix transformation? (2) If our transformation is a matrix transformation, how do we find its matrix?
    • 3.4: Matrix Multiplication
      In this section, we study compositions of transformations. As we will see, composition is a way of chaining transformations together. The composition of matrix transformations corresponds to a notion of multiplying two matrices together. We also discuss addition and scalar multiplication of transformations and of matrices.
    • 3.5: Matrix Inverses
      In this section, we learn to “divide” by a matrix. This allows us to solve the matrix equation Ax=b in an elegant way.
    • 3.6: The Invertible Matrix Theorem

    3: Linear Transformations and Matrix Algebra is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Dan Margalit & Joseph Rabinoff via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.