$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

6. Linear Maps

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

As discussed in Chapter 1, one of the main goals of Linear Algebra is the characterization of solutions to a system of $$m$$ linear equations in $$n$$ unknowns $$x_1, \ldots, x_n$$,

$\begin{equation*} \left. \begin{array}{rl} a_{11} x_1 + \cdots + a_{1n} x_n &= b_1\\ \vdots \qquad \vdots \qquad & \quad \vdots\\ a_{m1} x_1 + \cdots + a_{mn} x_n &= b_m \end{array} \right\}, \end{equation*}$

where each of the coefficients $$a_{ij}$$ and $$b_i$$ is in $$\mathbb{F}$$. Linear maps and their properties give us insight into the characteristics of solutions to linear systems.

Contributors

Both hardbound and softbound versions of this textbook are available online at WorldScientific.com.